1. Xia, L., K. Chen*, C. Fang, X. Wang, W. Wang, G. Wei, J. Wang, H. Chai, H. Zhu, and Z. Zhang (2025). Feasibility of Coseismic Landslide Prediction Based on GNSS Observations: A Case Study of the 2022 Ms 6.8 Luding, China, Earthquake, Seismol. Res. Lett.96(1), 244-259, https://doi.org/10.1785/0220240069.

  2. Ouyang, F.*, Z. Shao, W. Zhang, and Z. Zhang (2025). Dynamic Rupture and Strong Ground-Motion Simulations of the 8 January 2022 Ms 6.9 Qinghai Menyuan Earthquake, Seismol. Res. Lett., 96(1), 65-77, https://doi.org/10.1785/0220240149.

  3. Li, Y., Z. Zhang*, and X. Chen (2024). Developing a rapid assessment framework for China earthquake disaster losses: insights from physical simulations of the Yangbi earthquake, npj Nat. Hazards, 1, 37, https://doi.org/10.1038/s44304-024-00037-4.

  4. Shi, Y., Y. Li, and Z. Zhang* (2024). Estimation of Economic Loss by Earthquakes in Taiwan Region, npj Nat. Hazards, 1, 30, https://doi.org/10.1038/s44304-024-00030-x.

  5. Shi, Y., Z. Zhang*, C. Xue, and Y. Feng (2024). Machine Learning Prediction of Co-Seismic Landslide with Distance and Azimuth Instead of Peak Ground Acceleration, Sustainability, 16(19), 8332, https://doi.org/10.3390/su16198332.

  6. Sunilkumar, T. C., Z. Zhang*, Z. Wang, W. Wang, and Z. He (2024). Unveiling the Mechanisms of the 1819 M 7.7 Kachchh Earthquake, India: Integrating Physics-Based Simulation and Strong Ground Motion Estimates, Earth Space Sci., 11(8), e2023EA003308, https://doi.org/10.1029/2023EA003308.

  7. He, Z., Z. Zhang*, Z. Wang, and W. Wang (2024). Slip-weakening distance and energy partitioning estimated from near-fault recordings during the 2023 Mw 7.8 Türkiye-Syria earthquake, Tectonophysics, 885, 230424, https://doi.org/10.1016/j.tecto.2024.230424.

  8. Wan, J., W. Wang, and Z. Zhang* (2024). Enhancing computational efficiency in 3-D seismic modelling with half-precision floating-point numbers based on the curvilinear grid finite-difference method, Geophys. J. Int., 238(3), 1595-1611, https://doi.org/10.1093/gji/ggae235.

  9. Xin, D., Z. Zhang*, B. Chen, F. Wenzeld, Y. Li, and X. Chen (2024). Can We Develop a More Targeted Approach to Mitigating Seismic Risk? npj Nat. Hazards, 1, 19, https://doi.org/10.1038/s44304-024-00020-z.

  10. Xu, T., and Z. Zhang* (2024). Numerical simulation of 3D seismic wave based on alternative flux finite-difference WENO scheme. Geophys. J. Int., 238(1), 496-512, https://doi.org/10.1093/gji/ggae167.

  11. Xu, D., Z. Li, Z. Zhang, H. Yu, J. Xu, Z. Yang, and X. Chen* (2024). The 2022 Mw 6.6 Menyuan earthquake: an early-terminated runaway rupture by the complex fault geometry. Earth Planet. Sci. Lett., 638,118746, https://doi.org/10.1016/j.epsl.2024.118746.

  12. Shi, Y., Y. Li*, and Z. Zhang (2024). Reevaluating Earthquake Fatalities in the Taiwan Region: Toward More Accurate Assessments, Seismol. Res. Lett., 95(3), 1939-1948, https://doi.org/10.1785/0220230353.

  13. Li, Y., Z. Wang, Z. Zhang*, Y. Gu, and H. Yu (2024). A Physics-Based Seismic Risk Assessment of the Qujiang Fault: From Dynamic Rupture to Disaster Estimation, Int. J. Disaster Risk Sci., 15, 165-177, https://doi.org/10.1007/s13753-024-00542-0.

  14. Wan, W., L. Gan, W. Wang, Z. Yin, H. Tian, Z. Zhang, Y. Wang, M. Hua, X. Liu, S. Xiang, Z. He, Z. Wang, P. Gao, X. Duan, W. Liu, W. Xue, H. Fu, G. Yang, X. Chen, Z. Song, Y. Chen, X. Liu, and W. Zhang (2023). 69.7-PFlops Extreme Scale Earthquake Simulation with Crossing Multi-faults and Topography on Sunway, Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, 10, 1-15, https://doi.org/10.1145/3581784.3613209.

  15. Gu, Y., Z. Zhang*, W. Wang, and Z. He (2023). Dynamic rupture modeling and Ground-Motion Simulations of the 2022 Mw 6.6 Luding Earthquake, Seismol. Res. Lett., 94(6), 2575-2585, https://doi.org/10.1785/0220230110.

  16. Wang, Z., W. Zhang, T. Taymaz, Z. He, T. Xu, and Z. Zhang* (2023). Dynamic Rupture Process of the 2023 Mw 7.8 Kahramanmaras Earthquake (SE Türkiye): Variable Rupture Speed and Implications for Seismic Hazard, Geophys. Res. Lett., 50(15), e2023GL104787, https://doi.org/10.1029/2023GL104787.

  17. Yu, H., Z. Zhang, F. Hu, D. Xu, and X. Chen* (2023). Estimation of the Nucleation Location and Rupture Extent of the 1850 Xichang, Sichuan, China, Earthquake by Dynamic Rupture Simulations on a Multi‐Segment Stepover Structure, Earth Space Sci., 10(6), e2022EA002775, https://doi.org/10.1029/2022EA002775.

  18. Xu, D., W. Gong, Z. Zhang, J. Xu, H. Yu, and X. Chen* (2023). The 2016 Menyuan earthquake: the largest self-arrested crustal earthquake ever observed, Geophys. Res. Lett., 50(11), e2023GL103556, https://doi.org/10.1029/2023GL103556.

  19. Li, Y., D. Xin, and Z. Zhang* (2023). Estimating the economic loss caused by earthquake in Mainland China, Int. J. Disaster Risk Reduct., 95, 103708, https://doi.org/10.1016/j.ijdrr.2023.103708.

  20. Wang, W., Z. Zhang*, W. Zhang, and Q. Liu (2023). Implementation of efficient low-storage techniques for 3-D seismic simulation using the curved grid finite-difference method, Geophys. J. Int., 234(3), 2214-2230, https://doi.org/10.1093/gji/ggad198.

  21. Gu, Y., Z. Zhang*, W. Wang, and Z. Wang (2023). Dynamic rupture simulations based on interseismic locking models—taking the Suoerkuli section of the Altyn Tagh Fault as an example, Geophys. J. Int., 234(3), 1737-1751, https://doi.org/10.1093/gji/ggad161.

  22. 王文强,李懿龙,张振国*,信丹华,何仲秋,张伟,陈晓非(2023). 2022年9月5日泸定M6.8级地震灾害损失快速评估,中国科学:地球科学53(6), 1342-1352, https://doi.org/10.1360/SSTe-2022-0290.
    Wang, W., Y. Li, Z. Zhang*, D. Xin, Z. He, W. Zhang, and X. Chen (2023). Rapid estimation of disaster losses for the M6.8 Luding earthquake on September 5, 2022, Sci. China Earth Sci., 66(6), 1334-1344, https://doi.org/10.1007/s11430-022-1078-6.

  23. Wang, Z., Y. Li, W. Wang, W. Zhang, and Z. Zhang* (2023). Revisiting paleoearthquakes with numerical modeling: a case study of the 1679 Sanhe-Pinggu earthquake, Seismol. Res. Lett., 94(2A), 720-730, https://doi.org/10.1785/0220220208.

  24. Xu, D., Z. Zhang, Y. Qian, H. Yu, and X. Chen* (2022). Dynamic Modeling of the 2020 Mw 6.0 Jiashi Earthquake: Constrained by Geodetic and Seismic Observations, Seismol. Res. Lett., 93(6), 3278-3290, https://doi.org/10.1785/0220220102.

  25. Li, Y., Z. Zhang*, W. Wang, and X. Feng (2022). Rapid Estimation of Earthquake Fatalities in Mainland China Based on Physical Simulation and Empirical Statistics—A Case Study of the 2021 Yangbi Earthquake. Int. J. Environ. Res. Public Health, 19(11), 6820. https://doi.org/10.3390/ijerph19116820.

  26. Wang, W., Z. Zhang*, W. Zhang, H. Yu, Q. Liu, W. Zhang, and X. Chen (2022). CGFDM3D-EQR: A Platform for Rapid Response to Earthquake Disasters in 3D Complex Media, Seismol. Res. Lett., 93(4), 2320-2334, https://doi.org/10.1785/0220210172.

  27. Song, Z., Z. Zhang*, P.G. Ranjith, W. Zhao, and C. Liu (2022). Experimental study on the influence of hydrostatic stress on the Lode angle effect of porous rock, Int. J. Min. Sci. Technol., 32(4), 727-735, https://doi.org/10.1016/j.ijmst.2022.02.007.

  28. Song, Z., Z. Zhang*, G. Zhang, J. Huang, M. Wu (2022). Identifying the Types of Loading Mode for Rock Fracture via Convolutional Neural Networks, J. Geophys. Res.: Solid Earth, 127(2), e2021JB022532,  https://doi.org/10.1029/2021JB022532.

  29. Yu, H., F. Hu, J. Xu, Z. Zhang* and X. Chen (2022). Dynamic rupture simulation of the 1833 Songming, Yunnan, China, M 8.0 earthquake: Effects from stepover location and overlap distance, Earth Space Sci.9(2), e2021EA002100, https://doi.org/10.1029/2021EA002100.

  30. Taymaz, T.*, S., Yolsal-Çevikbilen, T. S. Irmak, F. Vera, C. Liu, T. Eken, Z. Zhang, C. Erman, and D. Keleş (2022). Kinematics of the 30 October 2020 Mw 7.0 Néon Karlovásion (Samos) earthquake in the Eastern Aegean Sea: Implications on source characteristics and dynamic rupture simulations, Tectonophysics, 826, 229223, https://doi.org/10.1016/j.tecto.2022.229223.

  31. Chen, K., J.-P. Avouac, J. Geng*, K. Liang, Z. Zhang, Z. Li, and S. Zhang (2022). The 2021 Mw 7.4 Madoi earthquake: an archetype bilateral slip-pulse rupture arrested at a splay fault, Geophys. Res. Lett.49(2), e2021GL095243, https://doi.org/10.1029/2021GL095243.

  32. Zhang, Z.*, and Y. Zhang (2021). Application of a parameter-shifted grey wolf optimizer for earthquake dynamic rupture inversion, Earthq. Sci., 34(6), 507-521, https://doi.org/10.29382/eqs-2021-0049.

  33. Li, Y., D. Xin, and Z. Zhang* (2021). A Rapid-Response Earthquake Fatality Estimation Model for Mainland China, Int. J. Disaster Risk Reduct., 66, 102618, https://doi.org/10.1016/j.ijdrr.2021.102618.

  34. Yuan S., Z. Zhang, H. Ren, W. Zhang, X. Song, and X. Chen* (2021). Finite-difference modeling and characteristics analysis of Love waves in anisotropic-viscoelastic media, Bull. Seismol. Soc. Am., 112(1), 23-47 https://doi.org/10.1785/0120200372.

  35. Xin, D., and Z. Zhang* (2021). On the comparison of seismic ground motion simulated by physics-based dynamic rupture and predicted by empirical attenuation equations. Bull. Seismol. Soc. Am., 111(5), 2595-2616,  https://doi.org/10.1785/0120210077.

  36. Li, Y., Z. Zhang, and D. Xin* (2021). A Composite Catalog of Damaging Earthquakes for Mainland China, Seismol. Res. Lett., 92(6), 3767-3777, https://doi.org/10.1785/0220210090.

  37. Gao, L., W. Zhang, Z. Zhang, and, X. Chen* (2021). Extraction of multimodal dispersion curves from ambient noise with compressed sensing, J. Geophys. Res.: Solid Earth, 126(6), e2020JB021472, https://doi.org/10.1029/2020JB021472.

  38. Xu, J., Z. Zhang, and X. Chen* (2021). The effects of sediments on supershear rupture. Tectonophysics, 805, 228777, https://doi.org/10.1016/j.tecto.2021.228777.

  39. Zhang, Z.*, W. Zhang, D. Xin, K. Chen, and X. Chen (2020). A dynamic-rupture model of the 2019 Mw 7.1 Ridgecrest Earthquake being compatible with the observations, Seismol. Res. Lett., 92(2A), 870-876, https://doi.org/10.1785/0220200258.

  40. Chen, K.*, Z. Zhang, C. Liang, C. Xue., and P. Liu (2020). Kinematics and dynamics of the 24 January 2020 Mw 6.7 Elazig, Turkey earthquake, Earth Space Sci., 7(11), e2020EA001452, https://doi.org/10.1029/2020EA001452.

  41. Xu, J., X. Chen, P. Liu, and Z. Zhang* (2020). Ground motion signatures of supershear ruptures in the Burridge-Andrews and free-surface-induced mechanisms, Tectonophysics, 791, 228570, https://doi.org/10.1016/j.tecto.2020.228570.

  42. Zhang, W., Z. Zhang*, M. Li, and X. Chen (2020). GPU implementation of curved-grid finite-difference modelling for non-planar rupture dynamics, Geophys. J. Int., 222(3), 2121-2135. https://doi.org/10.1093/gji/ggaa290.

  43. Yu, H., W. Zhang, Z. Zhang*, Z. Li, and X. Chen (2020). Investigation on the Dynamic Rupture of the 1970 Ms 7.7 Tonghai, Yunnan, China, Earthquake on the Qujiang Fault, Bull. Seismol. Soc. Am., 110(2), 898-919, https://doi.org/10.1785/0120190185.

  44. Qian, Y.*, X. Chen, H. Luo, S. Wei, T. Wang, Z. Zhang, X. Luo (2019).  An extremely shallow Mw4.1 thrust earthquake in the eastern Sichuan basin probably triggered by the unloading from a small scale infrastructure construction, Geophys. Res. Lett., 46, 13775-13784, https://doi.org/10.1029/2019GL085199.

  45. Zhang, W., Z. Zhang*, H. Fu, Z. Li, X. Chen (2019). Importance of spatial resolution in ground motion simulations with 3D basins: An example using the Tangshan earthquake, Geophys. Res. Lett., 46(21), 11915-11924, doi:10.1029/2019GL084815.

  46. Zhang, Z.*, W. Zhang, and X. Chen (2019). Dynamic rupture simulations of the 2008 Mw 7.9 Wenchuan earthquake by the curved grid finite-difference method, J. Geophys. Res.: Solid Earth, 124(10), 10565-10582, doi:10.1029/2019JB018630.

  47. Xu, X., Z. Zhang*, F. Hu, and X. Chen (2019). Dynamic rupture simulations of the 1920 Ms 8.5 Haiyuan earthquake in China, Bull. Seismol. Soc. Am., 109(5), 2009-2020, doi: 10.1785/0120190061.

  48. Fu, H.*, B. Chen, W. Zhang, Z. Zhang, W. Zhang, G. Yang, and X. Chen (2019). Extreme-scale earthquake simulations on Sunway TaihuLight, CCF Trans. HPC, 1(1), 14-24, doi:10.1007/s42514-019-00004-w.

  49. Liu, P.*, X. Chen, Z. Li, Z. Zhang, J. Xu, W. Feng, C. Wang, Z. Hu, W. Tu, and H. Li (2018). Resolving Surface Displacements in Shenzhen of China from Time Series InSAR, Remote Sensing, 10(7), 1162. 

  50. Harris, R.A.*, M. Barall, B. Aagaard, S. Ma, D. Roten, K. Olsen, B. Duan, D. Liu, B. Luo, K. Bai, J.-P. Ampuero, Y. Kaneko, A.-A. Gabriel, K. Duru, T. Ulrich, S. Wollherr, Z. Shi, E. Dunham, S. Bydlon, Z. Zhang, X. Chen, S.N. Somala, C. Pelties, J. Tago, V.M. Cruz-Atienza, J. Kozdon, E. Daub, K. Aslam, Y. Kase, K. Withers, and L. Dalguer (2018). A Suite of Exercises for Verifying Dynamic Earthquake Rupture Codes, Seismol. Res. Lett., 89(3), 1146-1162, doi:10.1785/0220170222.

  51. Chen, B., H. Fu, Y. Wei, C. He, W. Zhang, Y. Li, W. Wan, W. Zhang, Z. Zhang, G. Yang, X. Chen (2018). Simulating the Wenchuan Earthquake with Accurate Surface Topography on Sunway TaihuLight. In Proceedings of the International Conference for High Performance Computing, Networking, Storage, and Analysis (pp. 40:1–40:12). Piscataway, NJ, USA: IEEE Press.

  52. Huang, H., Z. Zhang*, and X. Chen (2018). Investigation of topographical effects on rupture dynamics and resultant ground motions, Geophys. J. Int., 212(1), 311-323, doi:10.1093/gji/ggx425.

  53. Fu, H., C. He, B. Chen, Z. Yin, Z. Zhang, W. Zhang, T. Zhang, W. Xue, W. Liu, W. Yin, G. Yang, and X. Chen (2017). 18.9-Pflopss Nonlinear Earthquake Simulation on Sunway TaihuLight: Enabling Depiction of 18-Hz and 8-meter Scenarios. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (p. 2:1–2:12). New York, NY, USA: ACM, doi:10.1145/3126908.3126910.

  54. Zhang, Z., J. Xu, H. Huang, and X. Chen* (2017). Seismic characteristics of supershear and sub-Rayleigh earthquakes: implication from simple cases, Geophys. Res. Lett., 44, 6712–6717, doi:10.1002/2017GL074158.
  55. Zhang, Z., W. Zhang*, X. Chen, P. Li, and C. Fu (2017). Rupture dynamics and ground motion from potential earthquakes around Taiyuan, China, Bull. Seismol. Soc. Am., 107(3), 1201–1212, doi:10.1785/0120160239.
  56. Hu, F., J. Xu, Z. Zhang, and X. Chen* (2016). Supershear transition mechanism induced by step over geometry, J. Geophys. Res.: Solid Earth, 121(12), 8738-8749, doi:10.1002/2016JB013333.
  57. Weng, H., H. Yang*, Z. Zhang, and X. Chen (2016). Earthquake rupture extents and coseismic slips promoted by damaged fault zones, J. Geophys. Res.: Solid Earth, 121(6), 4446–4457.
  58. Xu, J., Z. Zhang*, and X. Chen (2016). The effects of barriers on supershear rupture, Geophys. Res. Lett., 43(14), 7478–7485.
  59. Hu, F., Z. Zhang, and X. Chen* (2016). Investigation of earthquake jump distance for strike-slip step overs based on 3-D dynamic rupture simulations in an elastic half-space, J. Geophys. Res.: Solid Earth, 121(2), 994–1006.
  60. Zhang, Z., H. Huang, W. Zhang, and X. Chen* (2016). On the Free‐Surface Problem in Dynamic‐Rupture Simulation of a Nonplanar Fault, Bull. Seismol. Soc. Am., 106(3), 1162–1175.
  61. Zhang, Z., J. Xu, and X. Chen* (2016). The supershear effect of topography on rupture dynamics, Geophys. Res. Lett., 43, 1457–1463.
  62. 朱耿尚,张振国, 张伟,   陈晓非* (2016). 2013 年 6 月 2 日台湾南投地震强地面运动模拟. 地球物理学报, 59(8), 2871–2877.
  63. Chaljub, E.*, E. Maufroy, P. Moczo, J. Kristek, F. Hollender, P.-Y. Bard, E. Priolo, P. Klin, F. d. Martin, Z. Zhang, W. Zhang, and X. Chen (2015). 3-D numerical simulations of earthquake ground motion in sedimentary basins: testing accuracy through stringent models, Geophys. J. Int., 201(1), 90–111.
  64. Li, H., W. Zhang*, Z. Zhang, and X. Chen (2015). Elastic wave finite-difference simulation using discontinuous curvilinear grid with non-uniform time step: two-dimensional case, Geophys. J. Int., 202(1), 102–118.
  65. 徐剑侠,张振国*, 戴文杰, 张伟, N. Akram, 文健,   陈晓非 (2015). 2015 年 4 月 25 日尼泊尔地震波场传播及烈度初步模拟分析. 地球物理学报, 58(5), 1812–1817.
  66. Hu, F., J. Xu, Z. Zhang, W. Zhang, and X. Chen* (2014). Construction of equivalent single planar fault model for strike-slip stepovers, Tectonophysics, 632, 244–249.
  67. Zhang, Z., W. Zhang*, and X. Chen (2014). Complex frequency-shifted multi-axial perfectly matched layer for elastic wave modelling on curvilinear grids, Geophys. J. Int., 198(1), 140–153.
  68. Zhang, Z., W. Zhang, and X. Chen* (2014). Three-dimensional curved grid finite-difference modelling for non-planar rupture dynamics, Geophys. J. Int., 199(2), 860–879.
  69. 张振国, 孙耀充, 徐建宽, 张伟, 陈晓非* (2014). 2014 年 8 月 3 日云南鲁甸地震强地面运动初步模拟及烈度预测. 地球物理学报, 57(9), 3038–3041.
  70. 张振国, 张伟, 孙耀充, 朱耿尚, 文健, 陈晓非* (2014). 2014 年 2 月 12 日新疆于田地震强地面运动初步模拟及烈度预测. 地球物理学报, 57(2), 685–689.
  71. Zhang, Z., W. Zhang, H. Li, and X. Chen* (2013). Stable discontinuous grid implementation for collocated-grid finite-difference seismic wave modelling, Geophys. J. Int., 192(3), 1179–1188.
  72. Zhu, G., Z. Zhang, J. Wen, W. Zhang, and X. Chen* (2013). Preliminary results of strong ground motion simulation for the Lushan earthquake of 20 April 2013, China. Earthq. Sci., 26(3-4), 191–197.
  73. Zhang, W., Z. Zhang, and X. Chen* (2012). Three-dimensional elastic wave numerical modelling in the presence of surface topography by a collocated-grid finite-difference method on curvilinear grids, Geophys. J. Int., 190(1), 358–378.
  74. Shen, W.-B.*, R. Sun, W. Chen, Z. Zhang, J. Li, J. Han, and H. Ding (2011). The expanding Earth at present: evidence from temporal gravity field and space-geodetic data, Ann. Geophys., 54(4), 436–453.