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Abstract Currently, we evaluate the positioning accuracy

of GNSS mainly by providing statistical values that can

represent the overall error level, such as CEP, RMS,

2DRMS, and maximum error. These are solid indicators of

the general performance of the GNSS positioning. But

some applications like GNSS/INS integrated system

require a detailed analysis of the error characteristics and

knowledge of the precise error model. This requirement

necessitates the modeling of the error components of the

GNSS positioning solutions. In our research, the Allan

variance method is proposed to analyze the GNSS posi-

tioning errors, describe the error characteristics, and build

the corresponding error models. Based on our research,

four dominant noise terms are identified in the GNSS

positioning solutions, that is, 1st order Gauss-Markov

process, Gaussian white noise, random walk noise, and

flicker noise, which indicates that white noise is not always

enough and appropriate to model GNSS positioning errors

for some applications. The results show that the Allan

variance is a feasible and effective way to analyze the error

characteristics of the GNSS positioning solutions.

Keywords GNSS positioning � Allan variance � Error

analysis � Error modeling � Time series

Introduction

Global Navigation Satellite System (GNSS) has been

applied in almost every field, where position information is

needed, such as GNSS-aided INS (inertial navigation sys-

tem). For GNSS/INS loosely coupled integrated system,

the GPS position is used to estimate the errors in the INS

state and calibrate the inertial sensor. The GNSS/INS

integration algorithm normally uses Kalman filter to fuse

data. The standard Kalman filter requires the measurement

noise to be white noise. Most of the algorithm designs

regard GNSS error as white noise to make it simple to

handle (Shin 2001; Groves 2008). However, treating all of

them as white noise will cause the Kalman filter output

variance/covariance matrix, that is, P matrix, to be smaller

than the realistic estimation error level, that is, too opti-

mistic. Therefore, some researchers suggest enlarging the

parameter of the GNSS white noise in the Kalman filter,

that is, the measurement error variance matrix of Kalman

filter, that is, R matrix, to somehow compensate the

inconsistency issue (Groves 2008). But this method is just a

compromise. Actually, almost all of the GNSS-related

error sources are time or space correlated, such as

ephemeris errors, ionospheric and tropospheric delay, and

satellite geometry (Tralli and Lichten 1990; Rankin 1994;

Bierman 1995; Ge and Liu 1996). We speculate white

noise is not always optimal for modeling the GNSS posi-

tioning error in some applications.

A number of pioneering studies investigated the error

characteristics related to GNSS position solutions, which

can be classified into two categories roughly. Some focused

on investigating and modeling the GNSS error sources,

such as troposphere delay (Rankin 1994; Bierman 1995; Ge

and Liu 1996) and receiver clock error. Others focused on

the coordinate instability of the monitoring station derived
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by GNSS position (King et al. 1995; Langbein and Johnson

1997; Zhang et al. 1997; Mao et al. 1999; Bock et al. 2000;

Williams et al. 2004; Amiri-Simkooei et al. 2007; Khelifa

et al. 2011). However, to the authors’ knowledge, few

attempts have been made to investigate the positioning

error of GNSS technique itself.

For the previous works related to the GNSS positioning

error analysis, Friederichs (2010) made an attempt to

describe the applications of the Allan variance in the

geodetic time series analysis including the GPS position-

ing errors, but he did not analyze the error characteristics

in details, and the precise error model in GPS positioning

error had not been given in his research. Some references

can be found to analyze the temporal correlation property

of the GPS positioning error or GPS baseline time series to

investigate time correlation property of the observations

and the measurement noise of GPS receivers (Howind

et al. 1999; Borre and Tiberius 2000; El-Rabbany and

Kleusberg 2003; Amiri-Simkooei et al. 2007). Bock et al.

(2000) proposed the instantaneous GPS positioning

method and studied the characteristics of the geodetic

positioning at medium distances. Genrich and Bock (2006)

analyzed spectral characteristics of 10–50 Hz instanta-

neous relative positions over short- and medium-scale

GPS baselines. Although their research interest is different

from what we focus on, these previous works greatly

inspired our research. The innovation in our research lies

in the fact that it characterizes the errors in GPS posi-

tioning solutions.

The Allan variance method is a typical time-based

domain analysis technique. Applications of the Allan

variance have been extended to geodetic data analysis

(Feissel-Vernier et al. 2007; Friederichs 2010; Malkin

2011; Hackl et al. 2011). For instance, the Allan variance

method was applied to identify the temporal upper limit

accuracy of GPS-based monitoring system (Roberts et al.

2002). Khelifa et al. (2011) applied Allan variance

method to identify the noise type of the weekly time

series of GPS station coordinate residuals. We also pro-

pose to use this method, that is, Allan variance analysis

method to analyze the error characteristics of the GNSS

positioning solutions.

Our study differs from previous research in the follow-

ing two aspects. First, we focus on analyzing the charac-

teristics of GNSS positioning error itself rather than the

geodetic coordinates or the motion of the station derived

from GNSS. Second, the Allan variance method is not only

applied to identify the noise types, but also to estimate their

coefficients. Precise models of the GNSS positioning errors

have been built which is instructive for investigating the

GNSS positioning error sources.

Methodology

Allan variance is a time-based domain analysis technique

originally developed to study the frequency stability of

precision oscillators. It has become a popular method to

characterize the errors of inertial sensor. The Allan vari-

ance analysis has been widely used and accepted as a

preferred method for identifying stochastic processes, such

as quantization noise, white noise, correlated noise, sinu-

soidal noise, random walk, and flicker noise.

Allan variance analysis method

The definition and explanation of the Allan variance

method can be found in IEEE (2008a) for detail. The

analysis procedure can be described as follow (Niu et al.

2010).

(a) Divide the entire dataset into certain clusters, with a

cluster length of T or cluster time T.

(b) Calculate the mean value of each cluster.

(c) Calculate the difference on the mean values of every

two successive clusters.

(d) Calculate the mean square of these differences and

divide by two. This value is called the Allan variance

(r2) corresponding to the cluster time T, which

represents the signal instability on the time scale of T.

(e) Change the cluster time T from small to large and

calculate the Allan variances, so as to scan the signal

instability on different time scales.

(f) Draw the log–log plot of the Allan deviation, that is,

square root of the Allan variance versus the cluster

time T, which is called Allan variance plot, to analyze

the error characteristics.

The mathematic form of the Allan variance is:

r2ðTÞ ¼ 1

2ðNC � 1Þ
XNC�1

k¼1

ð�ykþ1 � �ykÞ2 ð1Þ

where �yk is the mean value of the cluster, NC is the total

number of the clusters, r2 is the Allan variance, and T is

the cluster time/length.

If different spectral noise components are assumed to be

described by different power spectral density (PSD) laws,

then examination of a log–log plot of Allan deviation

versus cluster time allows different noise types to be dis-

tinguished by the slope of the plot in particular time regions

and the magnitudes of these noise components to be

determined (Land et al. 2007). As indicated in IEEE

(2008b), the Allan variance analysis can be used for model

identification and parameter estimation. Figure 1 is a typ-

ical Allan deviation plot with different noise types.
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Estimation accuracy of Allan variance

Estimation accuracy of the Allan variance for a specific

cluster length T, or cluster time T, depends on the number

of independent clusters within the dataset. From a dataset

with finite length a finite number of clusters can be gen-

erated. The percentage error d in estimating r(m) when

using clusters containing m data points from a dataset of M

points is given by:

dðmÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðM

m
� 1Þ

q ð2Þ

Equation (2) shows that the estimation errors in the

regions of short/long cluster length are small/large as the

number of independent clusters in these regions is large/

small. EI-Sheimy et al. (2008) gave an example to

demonstrate this equation. If there are 2000 data points

and the cluster sizes of 500 points are used, the percentage

error in estimating rðTÞ is approximately 40 %. On the

other hand, for the short cluster containing ten points, the

percentage error is about 5 %. It must be noted that in case

the total data points of the raw dataset is too small, for

example, only 10 data points, it is not possible to get a set

of Allan variance values that are statistically significant and

form an Allan plot with sufficient accuracy. Here, we

calculate the Allan variance in the form of fully

overlapping Allan deviation for greater confidence (Riley

2008).

Noise models

Four types of stochastic processes of particular interest for

GNSS positioning solutions are listed below. The related

physical phenomena and sources will be explained in the

result and analysis section.

(a) Gaussian white noise: On the Allan deviation log–log

plot, this noise type is characterized by a region of

-1/2 slope, whereas in PSD log–log plot with a

region of 0 slope IEEE (2008a).

(b) Flicker noise: On the Allan deviation log–log plot this

noise type is shown as a region of 0 slope, but is

indicated with a -1 slope in PSD log–log plots IEEE

(2008b).

(c) Random walk: This type of noise is associated with an

Allan deviation log–log plot with a region of ?1/2

slope; and with a region of -2 slope for PSD log–log

plot IEEE (2008a).

(d) 1st order Gauss-Markov (GM) process, namely

exponentially correlated noise. The details are listed

in Table 1

Test setup and GNSS data processing

We analyzed GNSS positioning solutions in three different

modes, including post-processing carrier phase differential

GPS (DGPS), precise point positioning (PPP), and single

point positioning (SPP) at 1 and 50 Hz data rates. We col-

lected multiple datasets using Trimble NetR8 and Trimble

NetR9 receivers. Two kinds of experiments were conducted

consisting of six static datasets for each: one with length of

24 h at 1 Hz and one with length of 2 h at 50 Hz where both

dual-frequency carrier phase and pseudorange were recor-

ded. The Trimble NetR8 receiver is located at Wuhan

University IGS reference station. The Trimble NetR9

receiver is positioned at WHUC with known coordinates on

the rooftop of the GNSS Research Center at Wuhan Uni-

versity as shown in Fig. 2. To minimize the multipath

effects, the following measures are applied: (a) GPS

antennas of good quality are used as illustrated in Table 2;

Fig. 1 Sample plot of Allan variance analysis results (IEEE 2008a)

Table 1 Features of Allan variance plots for typical noise terms

Noise type Allan variance Coefficient Curve slope Coefficient value

White noise N2

T
N -1/2 N ¼ rð1Þ

Flicker noise 2B2 ln 2
p

B 0 B ¼ rðf0Þ

Random walk K2T
3

K ?1/2 K ¼ rð3Þ

GM process r2ðTÞ ¼ ðqcTcÞ2
T

1� Tc

2T
3� 4e�

T
Tc þ e�

2T
Tc

� �h i
TC ;rGM ±1/2 Tc ¼ Tmax

1:89
; rGM ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5qcTc

p
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(b) Both GPS antennas are set in fairly favorable circum-

stance where the reflective signal can be negligible; (c) The

observations of satellites with elevations angle below 10 �
are rejected in the GNSS data processing.

The datasets at 1 Hz and length of 12–24 h were pro-

cessed to analyze the long-term low-frequency noise

characteristics, whereas datasets at 50 Hz and relatively

short-time length of 1–2 h were processed for analyzing

the short-term high-frequency noise components. Since

processing long-time datasets at 50 Hz needs significant

computer resources and it is actually not necessary to

process long-time high-rate data, the 1 Hz data were

selected as long-time datasets. The datasets involved in the

analysis were collected in static mode, because: (a) the

static datasets are capable of reflecting most GPS error

sources except the effect of multipath, which is complex

and varies in different environment; (b) the long-time

kinematic datasets are not feasible to be collected and the

qualified positioning truth for kinematic epochs is hard to

be obtained. For the DGPS analysis, the smoothed DGPS

positioning solutions are of high accuracy, for example,

2 cm (1r) in horizontal, so the accuracy of the reference

truth should be one order of magnitude higher, namely

millimeter accuracy, which is difficult to acquire in kine-

matic circumstance. We processed the static dataset in

kinematic modes in our research. In such case, accurate

reference value is available and the GPS position error

series can be easily computed. The following sections

describe in detail the data acquisition and the data pro-

cessing strategy.

Datasets for DGPS solution

The datasets collected at the IGS station were used as the

master and those collected by Trimble NetR9 at the roof of

the GNSS Research Center were used as the rover. The

datasets were processed with GrafNav software v.8.30

developed by Waypoint Group at NovAtel Inc. (http://www.

novatel.com) in post-processing kinematic mode. The length

of the baseline between the master and the rover is about

500 m.

Datasets for PPP solution

The datasets were processed with the PANDA (Positioning

And Navigation Data Analyst) software (Liu and Ge 2003)

developed at Wuhan University, in post-processing kine-

matic mode. Precise IGS final orbit and satellite clock files

at 30-s interval were used in the data processing. In addi-

tion, corrections for geophysical effects, such as pole and

ocean tide effects, have been applied.

Datasets for SPP solution

The datasets for SPP solution were processed with RTK-

LIB program package v. 2.4.1 (http://www.rtklib.com) in

‘‘Single’’ mode. The dual-frequency observations were

used for ionospheric correction, and the ‘‘Saastamoinen’’

model was used for tropospheric correction. Even though

the Saastamoinen model is old, the differences of tropo-

spheric correction by different models are small compared

to the overall SPP positioning error.

Table 2 lists additional details of the datasets including

the length, the antenna type, and the solution types. The

positioning error series were calculated using the precisely

known coordinates of the stations WUHN and WHUC,

then the positioning error at each epoch were transformed

to local level coordinates.

Table 2 Dataset collections and GNSS processing

Positioning mode Data rate (Hz) Data length (h) Receiver and antenna Processing software Solution

DGPS 1 24 Trimble NetR8 and NetR9

Dorne Margolin with choke ring

GrafNav 8.30 Kinematic and smoothing

50 2

PPP 1 12 Trimble NetR9

Zephyr GNSS Geodetic II

PANDA Kinematic and smoothing

50 1.25

SPP 1 24 Trimble NetR9

Zephyr GNSS Geodetic II

RTKLIB

2.4.1

Single and Combined

Fig. 2 Antenna connected to Trimble NetR9 receiver located on the

rooftop of the GNSS Research Center at Wuhan University
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The Allan variance method is applied to the time series

of positioning error along the east, north, and up directions

to obtain the Allan plots. Then, error models and their

parameters were estimated from the Allan plots. Six groups

of GPS solutions in DGPS mode were discussed to illus-

trate the repeatability of the results. Additionally, the PSD

method was applied to the same datasets to validate the

result from the Allan variance method is reasonable.

Results and analysis

In this section, we will discuss the post-processing DGPS

solutions in great details as an example to illustrate the

Allan variance analysis method for analyzing GNSS posi-

tioning error characteristics. The analysis for PPP and SPP

solutions are similar to that of DGPS, so their results will

be presented without detailed discussion.

Allan variance analysis to DGPS solution

DGPS solutions of 1 and 50 Hz will be analyzed by the

Allan variance analysis method for characterizing the

positioning error. The error sources will be discussed in

details.

DGPS solution of 1 Hz

Figure 3 shows the time series of the positioning error of

DGPS solution at 1 Hz in the east, north, and up directions,

which indicates the post-processing kinematic DGPS can

reach the precision of 4 mm and 10 mm (1r) in horizontal

and vertical directions, respectively. Such statistic sum-

mary parameters, that is, 1r, can indicate the overall

accuracy of the GNSS positioning in a concise way, but it

cannot reflect the details of the error characteristics. This

figure shows that dU is noisier than dE and dN as generally

expected. By applying the Allan variance analysis method

to the entire dataset along these three directions, we can

obtain the log–log plots of Allan deviation versus cluster

time as shown in Fig. 4.

Figure 4 shows that the Allan deviation curves in the

east, north, and up directions are of similar shape, with the

magnitude of the vertical component apparently greater

than that of the horizontal. As discussed before, this is

because GPS provides better positioning accuracy in hor-

izontal directions.

The vertical component of the Allan plot in Fig. 4 will

be used as an example to illustrate how to identify noise

type and to estimate their coefficients. A dashed straight

line with a slope of -0.41, which is close to -1/2, fits the

beginning part of the curve and crosses T = 1 s at a value

of 3.9 mm. This means that white noise with strength of 3.9

mm=
ffiffiffiffiffiffi
Hz
p

is the dominant noise term for the short cluster

time below 10 s. The time series of DGPS position errors

contains 86,400 (i.e., 3,600*24) data points and the coef-

ficient for white noise is estimated at cluster time T = 1 s;

therefore, the number of independent clusters is 86,400,

resulting in an estimation percentage error of smaller than

1/sqrt(2*(86,400-1)) = 0.24 %. The difference in white

noise part’s slope of -0.41 and -1/2 may be explained by

influence of adjacent longer-term errors on the right side of

the curve. This will be described below.

The white noise portion is followed by two raised

points, marked by dashed crosses, in the large cluster time

region of T [ 100 s. This means that the 1st order Gauss-

Markov process is the dominant noise in that time region.

With these values we can calculate the correlation time and

the mean square value of the 1st order Gauss-Markov

process as illustrated in Table 1. Table 3 lists the coeffi-

cients of noises identified in DGPS solutions at 1 Hz.

For the short-length baseline of 500 m, the main GNSS

error sources such as satellite clock drift, ephemeris errors,

and propagation delays can be corrected by double differ-

ence. Due to the fairly favorable circumstance and the use

of choke ring antenna, the multipath disturbance is negli-

gible too. However, the receiver measuring noise and the

Fig. 4 Allan plots of DGPS solution (1 Hz)
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Fig. 3 Positioning error of DGPS solution (1 Hz)

GPS Solut (2014) 18:231–242 235

123



residual tropospheric delay cannot be eliminated com-

pletely, which would therefore remain as the dominant

error sources.

The white noise identified in the small cluster time

region is most likely induced by the receiver measurement

noise. This is because (a) the residual tropospheric delay

would most likely cause long-term time-correlated noise in

the DGPS solutions; (b) the GPS receiver noise at sampling

rate below 1 Hz can be regarded as independent without

any time correlation (Borre and Tiberius 2000). For large

cluster time region, for example, above 100 s, the dominant

noise terms show time-correlated properties. Two aspects

may cause time correlation in GPS positioning time series.

One is that the observations are noisy so that some signal

smoothing or filtering has been applied to reduce the noise

level. The other is that some time correlation error sources,

such as multipath and atmospheric delays, remain in the

time series after data processing (Amiri-Simkooei et al.

2007). So the most possible cause of this time-correlated

noise term is the remaining tropospheric delay (Howind

et al. 1999), which is difficult to be eliminated completely

especially for the wet component (Tralli and Lichten 1990;

Ge and Liu 1996). The tropospheric path delay shows time-

correlated property, which can be modeled as 1st Gauss-

Markov process (Rankin 1994; Ge and Liu 1996).

In the following, two strategies are applied to validate

the rationality of the error models analyzed based on Allan

plots: a) if the noise components can be reconstructed with

the coefficients listed in Table 3 and one obtains the same

Allan plots, the rationality of the analysis above can be

validated. b) Checking whether the Allan results are con-

sistent with that of conventional time series analysis

method PSD. We use MATLAB to simulate an error time

series consisting of white noise and 1st order Gauss-Mar-

kov process which have the same parameters as listed in

Table 3. The simulated dataset is as long as the real DGPS

positioning solutions at 1 Hz, containing the same number

of data points. Since the white noise and the 1st order

Gauss-Markov process are ergodic processes and the sim-

ulated error time series is sufficiently long, one sample of

simulation is sufficient to reflect the error characteristics.

The Allan variance analysis method is applied to analyze

the simulated data, generating the Allan plot as shown in

Fig. 5. Comparison of Figs. 5 and 4 shows that the two

Allan curves are consistent in both shape and magnitude

except for the ending part due to the uncertainty of Allan

variance, which indicates the noise types and their coeffi-

cients identified from the Allan plots of the DGPS solutions

at 1 Hz are credible.

Additionally, the PSD was applied to the same raw

DGPS solutions at 1 Hz by using Welch’s method.

Welch’s method is a modified periodogram spectral esti-

mation method based on time averaging over short and

modified periodograms (Welch 1967). Nevertheless, due to

the density of the high-frequency data points in the log–log

PSD plot, it might be difficult to identify the noise type

through the PSD plots. Hence, the frequency averaging

technique IEEE (2008b) was used to reduce the number of

points in the PSD result and make the noise term identifi-

cation easier.

Figure 6 shows the spectral characteristics of the DGPS

solution of 1 Hz with a flat segment that can be identified

in the low-frequency region. The figure shows an approx-

imately linear decline for the intermediate segment to

which a dashed straight line with slope of -1.62 can be

fitted. Considering the interaction of different noise types,

for example, multiple GM processes with different corre-

lation times and the influence of the white noise part on the

right-hand side, the value of the slope can be considered to

be close to the theoretical value of -2. Therefore, 1st order

Gauss-Markov process, that is, the flat portion plus the

intermediate linear-decline portion, can be identified as the

dominant noise term for low frequency below 0.02 Hz.

The ending segment on the right of the PSD curve is close

to a straight line with 0 slope, which means white noise can

Fig. 5 Allan plots of the simulated dataset (to verify the analysis

results)

Table 3 Noises identified in

DGPS solution (1 Hz)
Direction GM1 GM2 White noise

TC (s) rGM (mm) TC (s) rGM (mm) N ðm=
ffiffiffiffiffiffi
Hz
p
Þ

E 124.7 ± 4.6 2.8 ± 0.1 920 ± 90 2.9 ± 0.9 1.5

N 130.5 ± 5.0 3.3 ± 0.1 840 ± 80 3.3 ± 0.3 1.7

U 175.4 ± 7.7 9.1 ± 0.4 1,240 ± 150 9.3 ± 1.1 3.9
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be identified in high-frequency span above 0.2 Hz. The

comparison shows that the noise types identified by the

Allan variance are consistent with that of PSD.

We analyzed six sets of DGPS positioning solutions at

1 Hz and 24 h each to investigate the repeatability of the

Allan variance analysis results. The estimated coefficients

for the white noise and the 1st Gauss-Markov process No. 1

(GM1) are listed in Tables 4 and 5, respectively. The tables

indicate the estimated coefficients are close to each other

for different sets of solutions, which means the error

characteristics of the GNSS positioning solutions have

good consistency. As a result, each of the individual

solution can be used as a representation for the error

characteristics analysis.

DGPS solution of 50 Hz

Figure 7 shows the time series of the positioning error of

the DGPS solution at 50 Hz. It indicates that the post-

processing DGPS can reach the precision of 6 mm and

15 mm (1 r) in horizontal and vertical directions, respec-

tively, which is roughly consistent with the accuracy of the

DGPS solution at 1 Hz, that is, 4 and 10 mm. A log–log

plot of Allan deviation versus the cluster time is shown in

Fig. 8.

Figure 8 shows that an apparent local maximum can be

identified for the cluster time T \ 1 s, which means time-

correlated noise is the dominant term in this region rather

than the white noise. This seems inconsistent with the

conclusion of the DGPS solutions at 1 Hz, but it is rea-

sonable. As mentioned above, receiver measurement noise

and remaining tropospheric delay are the dominant error

sources for the short-length baseline DGPS solution. This

high-frequency time-correlated noise is most likely

induced by the receiver, namely measurement noise. The

GPS receiver is indeed capable of providing observations

without any time-correlated noise at a relatively low

sampling rate, for example, \1 Hz; but the noise is no long

independent between consecutive observables at high

sampling rate, for example, [1 Hz (Borre and Tiberius

2000). This time-correlated noise essentially reflects the

low-pass effect of the carrier phase tracking loop inside the

Trimble receiver. The right-hand side of the local maxi-

mum seems steeper than -1/2, which may be related to the

higher order, that is, second or third order, of the loop filter

(Xie 2009). In our research, this type of correlated noise

was approximately modeled as 1st order Gauss-Markov

process to keep the modeling concise.

Table 5 Estimated coefficients of GM1 for six sets of DGPS solu-

tions (1 Hz)

Test

no.

E N U

TC

(s)

rGM

(mm)

TC

(s)

rGM (mm) TC

(s)

rGM (mm)

1 124.7 2.8 130.5 3.3 175.4 7.7

2 120.3 2.7 132.4 3.5 170.1 7.4

3 124.7 2.7 133.7 3.0 167.4 6.9

4 124.7 2.8 128.4 3.2 172.2 7.0

5 124.7 2.7 135.7 3.3 171.8 7.6

6 124.7 2.8 131.4 3.2 175.4 7.6

Mean 124.0 2.8 132.0 3.3 172.1 7.4

STD 1.8 0.05 2.5 0.16 3.1 0.34

Fig. 6 Power spectral density functions of DGPS solution (1 Hz)

Table 4 Estimated coefficients of white noise for six sets of DGPS

solutions (1 Hz)

Test no. E (mm=
ffiffiffiffiffiffi
Hz
p

) N (mm=
ffiffiffiffiffiffi
Hz
p

) U (mm=
ffiffiffiffiffiffi
Hz
p

)

1 1.5 1.7 3.9

2 1.6 1.8 4.1

3 1.5 1.7 3.9

4 1.5 1.7 3.8

5 1.6 1.8 4.2

6 1.5 1.7 4.0

Mean 1.53 1.73 3.98

STD 0.05 0.05 0.15
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Fig. 7 Positioning error of DGPS solution (50 Hz)
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For cluster time T [ 2 s, the Allan plot shows an

approximately linear increase with a slope of 0.46, close to

?1/2, which means random walk is the dominant noise

term in large cluster time region. This random walk noise

can be regarded as the left-hand part of the 1st order Gauss-

Markov process in Fig. 4. The detailed explanation will be

given in the next section. The coefficients of noises iden-

tified in DGPS solutions at 50 Hz are listed in Table 6.

The PSD analysis was also applied to the DGPS solutions

of 50 Hz to validate the Allan variance analysis as shown in

Fig. 9. At low-frequencies region, the PSD plot is close to a

straight line with slope of -2, which means random walk is

the dominant noise. An local maxima can be identified in the

high-frequency region above 1 Hz, which means the output

of the system exhibits the characteristics of high order, for

example, second or third order, time-correlated noise. This

is caused by the equivalent low-pass filter function for the

carrier phase tracking with high order, as mentioned before.

The result indicates the noise types identified by the PSD

and the Allan variance methods are same.

Comparison of DGPS of 1 and 50 Hz

A comparison of the Allan plots of DGPS solution at 1 Hz

shown in Fig. 4 and 50 Hz shown in Fig. 8 indicates the

two figures are consistent with each other in both shape and

the magnitude for the overlap part of the cluster time, for

example, 10–200 s. For the cluster time T \ 10 s, the

white noise identified in Fig. 4 is actually the right-hand

part of the 1st order Gauss-Markov process identified at the

short cluster portion, that is, cluster time T \ 1 s, of Fig. 8.

However, they are different in magnitude, such as the value

of white noise part for DGPS solution of 1 Hz is higher

than that of 50 Hz. This is because the 1 Hz sampling rate

is actually under-sampling for the GNSS receiver whose

equivalent sensing bandwidth is around 20 Hz. Such

under-sampling resulted in the higher noise magnitude in

the Allan plot. Similarly, the random walk identified in

Fig. 8 is actually the left-hand part of the 1st order Gauss-

Markov process identified in Fig. 4. Different from the

noise part, the magnitudes kept consistent very well, which

is because the under-sampling issue does not exist for the

long-term errors. Due to the large uncertainty of the ending

part of Fig. 8, the region when cluster time T [ 200 s will

not be discussed.

Theoretically, white noise and random walk can be

regarded as two limits of the 1st order Gauss-Markov

process. When cluster time T�TC, the 1st order Gauss-

Markov process can be regarded as random walk noise,

while for T�TC, it can be regarded as white noise. So if the

DGPS solution at 50 Hz could be long enough, for exam-

ple, 24 h, then we would be able to observe the whole

raised pattern representing the 1st order Gauss-Markov

process. So based on the analysis above, we can conclude

that the random walk noise is most likely induced by the

remaining tropospheric delay as it is for the DGPS solu-

tions at 1 Hz.

It should be noted here that the analysis of DGPS

solutions at 1 and 50 Hz are based on short-length baseline.

The error components in DGPS positioning solutions might

change as the length of the baseline increases, for example

tens of kilometers.

Allan variance analysis to PPP Solution

The Allan analysis will be applied to PPP positioning

solutions at 1 and 50 Hz. The result will be presented

Fig. 8 Allan plots of DGPS solution (50 Hz) Fig. 9 Power spectral density functions of DGPS solution (50 Hz)

Table 6 Noises identified in DGPS solutions (50 Hz)

Direction GM Random walk

TC (s) rGM (mm) K ðmm=
ffiffi
s
p Þ

E 0.042 1.8 0.42 ± 0.01

N 0.042 2.4 0.51 ± 0.01

U 0.042 4.9 1.23 ± 0.03
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directly without detailed discussion, since the analysis

procedure is similar to that of DGPS.

PPP solution of 1 Hz

The Allan plot of PPP positioning solutions at 1 Hz is

shown as Fig. 10. From this figure, flicker noise can be

identified as the dominant noise term for cluster time

T \ 1 s and the dominant noise term for the intermediate

segment, that is 1 \ T\ 1,000 s, is the 1st order Gauss-

Markov process. For the ending part, it is hard to identify

the noise type due to the large uncertainty of the Allan

variance. Table 7 lists the estimated coefficients of the

flicker noise and the 1st order Gauss-Markov process.

PPP solution of 50 Hz

Figure 11 is the Allan plots of PPP positioning solution of

50 Hz, which shows that the dominant noise term can be

approximately modeled as 1st order Gauss-Markov process

for cluster time T \ 0.5 s. The coefficients for this noise

term are listed in Table 8. A comparison of the coefficients

in Tables 6 and 8 shows that GM processes identified in the

50 Hz PPP and DGPS solutions have the same correlated

time and similar magnitude, which indicates they are

caused by the equivalent bandwidth of the carrier phase

tracking loop of the receivers.

Random walk can be identified for cluster time above

0.5 s whose coefficients are listed in Table 8. The large

cluster time region, for example, T [ 400 s, of the plots

will not be discussed, since the curves along three different

directions are not consistent with each other, which is

caused by the increase of the estimation uncertainty of the

Allan variances.

Allan variance analysis to SPP solution

The Allan variance analysis method is applied to SPP

solutions at 1 Hz and 50 Hz. Since the analysis strategy is

similar to that used above, the result will be presented

directly with only brief explanations.

SPP solution of 1 Hz

The Allan plot of SPP positioning solution at 1 Hz, that is,

Figure 12, shows an approximately linear decline at the

beginning segment for cluster time T \ 10 s. A straight

line with a slope of -0.39, close to -1/2, can be fitted to

this portion, which means white noise is the dominant noise

term. The dominant noise can be modeled as 1st order

Gauss-Markov process for large cluster time region, for

example, T [ 500 s, but for which the estimated coeffi-

cients may have large estimation uncertainty. For cluster

time 10 \ T\ 400 s, the plot looks like 1st order Gauss-

Markov process. But due to the interactions of the other

two noise terms identified above, part of the raised pattern

representing the 1st Gauss-Markov process is masked. This

speculation can be validated in the analysis of SPP

Fig. 10 Allan plots of PPP solution (1 Hz) Fig. 11 Allan plots of PPP solution (50 Hz)

Table 8 Noises identified in PPP solution (50 Hz)

Direction GM Random walk

TC (s) rGM (mm) Kðmm=
ffiffi
s
p Þ

E 0.042 1.6 1.6

N 0.042 2.0 2.2

U 0.042 4.0 4.2

Table 7 Noises identified in PPP solutions (1 Hz)

Direction Flicker noise GM

B (mm) TC (s) rGM (mm)

E 1.5 130.5 6.0

N 2.0 130.5 7.0

U 4.9 130.5 16.4
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solutions at 50 Hz later. Table 9 lists the estimated coef-

ficients of noise identified in SPP solutions of 1 Hz.

SPP solution of 50 Hz

The Allan plot of SPP solution of 50 Hz in Fig. 13 shows

that two raised regions can be identified and a straight line

with a slope of 0.41 can be fitted to the beginning segment

of the plot. Considering the interaction of different noises,

the dominant term for SPP solution at 50 Hz can be

modeled as superposition of the two 1st order Gauss-

Markov processes with different correlation times.

Table 10 lists their estimated coefficients.

A comparison of Figs. 12 and 13 indicates that the noise

suspected to be 1st order Gauss-Markov process at the

cluster time of 10 \ T\400 s in Fig. 12 can be confirmed

in Fig. 13.

Conclusion

We made an attempt to characterize the GNSS positioning

errors by using the Allan variance analysis method. Time

series of GPS positioning error in three different modes,

that is, DGPS, PPP, and SPP, are analyzed. Four dominant

terms are identified in the GPS positioning solutions, that

is, 1st order Gauss-Markov process, white noise, random

walk noise, and flicker noise, which indicates that the

GNSS positioning error components are complex. Conse-

quently, it is not always optimal to model the GNSS

positioning noise as white noise.

Allan variance analysis is proven to be an effective and

feasible method to analyze the characteristics of the GNSS

positioning error and build precise error models.

The models can be used for investigating the GNSS

error sources, which is important for the improving the

GNSS positioning techniques. Meanwhile, the precise

GNSS positioning error models can be used in the GNSS/

INS integration algorithms to optimize the navigation

results, for example, make the variance of the estimation

match the actual error level. Therefore, the Allan variance

analysis method can be proposed for the GNSS positioning

research and evaluation in the future, with some conven-

tional method, for example, PSD as supplement if

necessary.

As future work, the characteristics positioning error of

long baseline DGPS solution and BeiDou Navigation

Satellite System (BDS) are to be investigated using the

Allan variance analysis method.
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