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The complementary advantages of high-rate Global Positioning System (GPS) and
accelerometer observations for measuring seismic ground motion have been recognised
in previous research. Here we propose an approach of tight integration of GPS and
accelerometer measurements. The baseline shifts of the accelerometer are introduced as
unknown parameters and estimated by a random walk process in the Precise Point
Positioning (PPP) solution. To demonstrate the performance of the new strategy, we carried
out several experiments using collocated GPS and accelerometer. The experimental results
show that the baseline shifts of the accelerometer are automatically corrected, and high
precision coseismic information of strong ground motion can be obtained in real-time.
Additionally, the convergence and precision of the PPP is improved by the combined
solution.
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1. INTRODUCTION. The Global Positioning System (GPS) has been widely
used for estimating coseismic displacement with accuracies ranging from a few
centimetres to a few millimetres, in support of both the modelling of fault rupture
and investigations of mechanical fault behaviour (Larson, 2009). At the same time,
however, the limitation of high-rate GPS is widely recognised; its high precision
can only be guaranteed for the displacement information, whereas the velocity and
acceleration information usually involves large uncertainties caused by environmental
and instrumental noises (Elósegui et al., 2006). On the other hand, a digital
accelerometer can measure strong ground motion with a much higher resolution
than the GPS, but its records are often plagued by what we call baseline shifts
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(acceleration bias): small steps or distortions in the reference level of motion (Iwan
et al., 1985). In this study, the baseline (zero acceleration) is only related to the
accelerometer records, which means it is different from the traditional GPS baseline
(relative distance). The baseline shifts of the accelerometer are caused by the tilting
and/or rotation of the accelerometer itself in the coseismic period, and they will lead to
an integrated velocity and/or displacement with large uncertainties. In previous
studies, the baseline shifts of the accelerometer are mainly corrected by empirical
methods (Wang et al., 2011). A challenging issue of these previous methods is the
empirical criterion needed to determine the two timing parameters (the beginning and
end of the transient baseline shifts) of the bi-linear correction. As the baseline shifts can
happen at any time, especially in the coseismic period, different timing windows may
involve large and unquantifiable uncertainties compared with the geodetic results
(Wang et al., 2013). There are some published approaches for an integrated processing
of high-rate GPS and accelerometer records. Bock et al. (2011) presented a
methodology to optimally estimate the displacement in near real-time from a
combination of the GPS relative positioning displacements and raw accelerometer
acceleration records by a Kalman filter. This may avoid problematic baseline shifts to
some extent. However, it is still difficult to constrain the baseline shifts, as these
baseline shifts cannot be absorbed completely by the dynamic noises of the filter, so the
recovered results may have a large offset. In Wang et al. (2013), a trigonometric
function polynomial was formed to express the baseline shifts, and a least-squares
solution was used to determine the baseline shifts by making the corrected
displacements optimally consistent with the high-rate GPS displacement. Their
approach can retrieve high-precision velocity and displacement to some extent, but
the assumptions of the trigonometric function polynomial are influenced by subjective
factors since the baseline shifts are very complex, and themethod cannot be operated in
real-time. Tu et al. (2013) presented a cost effective approach to retrieve high precision
and broadband groundmotion information by joint use of a single-frequency GPS and
a MEMS accelerometer, and validated it by an experimental dataset. Li et al. (2013)
used accelerometer data after applying baseline shift corrections to strengthen GPS
solutions for better integer ambiguity-fixing and consequently better accuracy. Geng
et al. (2013a) proposed that a small bias of the acceleration can be modelled as a
random walk process to be estimated together with displacement, but they did not
study the bias in depth as there are no significant baseline shifts observed for a minor
earthquake. In Tu et al. (2014), the baseline shifts in strong-motion records are firstly
estimated by GPS measurement, then corrected to recover the coseismic waves in a
short period. The high-frequency acceleration records from the strong motion are not
fully used to improve the GPS results. Tu and Wang (2014), mainly discussed the idea
that with an integrated Kalman filter and multi-sensors, the coseismic waves can be
optimally recovered, especially when the observation conditions are very bad.
In this study, we propose an approach of tight integration with GPS and

accelerometer records to complement each others’ advantages. Our approach is
designed not only to automatically correct the transient baseline shifts, but also to
improve the PPP convergence and precision, and can provide real-time high-precision
ground motion information. After an introduction of the theoretical and technical
background, the new approach was employed to analyse the experimental data which
was recorded by collocated GPS and accelerometer. Some conclusions and discussions
are provided at the end.
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2. METHODOLOGY. Precise Point Positioning (PPP) achieves a precision
of a few centimetres or millimetres after convergence (Zumberge et al., 1997).
Meanwhile the precision and convergence speed can be improved by integer
ambiguity-fixing (Ge et al., 2008; Geng et al., 2010; 2011). Moreover, it operates
with a single station, there is no need for reference stations and simultaneous
observation; it is low-cost and convenient compared with relative positioning and GPS
Real Time Kinematic (RTK). So it is possible to detect the baseline shifts of the
accelerometer for a collocated pair of one GPS receiver and one accelerometer by PPP.
The main idea is that the displacement retrieved by the high-rate (several Hz) PPP only
contains a small random error after all the observation errors are accurately corrected.
The accelerometer observations have a much higher resolution (80–200 Hz), but the
velocity and displacement waves are easily contaminated by the baseline shifts.
Fortunately, the advantages of each method can be complementary when integrating
the two measurements. The combined results will be more robust since the system
errors are corrected and the random errors are weakened. In this approach, the
acceleration records of the accelerometer are integrated into the PPP model, the
baseline shifts of the accelerometer are estimated as unknown parameters together
with the coordinates, troposphere, clock error and ambiguities. The Kalman filter
is used for parameter estimation, meanwhile the Helmert method of variance
components estimation is used to adjust the random model (Cui et al., 2001). Four
time series in the form of displacement, velocity, acceleration and baseline shifts
are obtained in real time by the combined system.
Briefly, the observations of the combined systems are classified into three categories,

carrier phase, pseudorange and acceleration. Then, the observation equations are
written as follows:

ll = A · s+ B · z+ c · t+ λ ·N + εl, εl�N(0, ql) (1)
lp = A · s+ B · z+ c · t+ εp, εp�N(0, qp) (2)

la = a+ u+ εa, εa � N(0, qa0 ) (3)
where the symbols ll and lp denote the GPS carrier phase and pseudorange
observation. la denotes the acceleration observation by the accelerometer, A and B
are the designed matrix for receiver position and tropospheric delay. λ is the
wavelength, and c is the speed of light. s, a and u denote the receiver position,
acceleration and baseline shifts corrections of the accelerometer. z, t and N are the
tropospheric zenith delay, receiver clock and phase ambiguity. εl, εp and εa are the
measurement noises of the carrier phase, pseudorange and acceleration observations,
their variances are ql, qp and qa0 respectively.
Equations (1) to (3) can be rewritten as:

yk = Mk · xk + εyk , εyk � N(0,Qyk ) (4)

yk =
ll
lp
la

2
4

3
5 (5)

Mk =
A 0 0 0 B c λ
A 0 0 0 B c 0
0 0 1 1 0 0 0

2
4

3
5 (6)
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xk = sk vk ak uk zk tk Nk
� �T (7)

Pk =
1/ql

1/qp
1/qa0

2
4

3
5 (8)

where yk is the observation vector, xk is the estimated parameters vector, Mk

is the coefficient matrix, Pk and Qyk are the weight matrix and noise variance matrix,
εyk is the noise, vk denotes the vector of the receiver velocity, k is the epoch index.
Usually, the dynamic state equation of the acceleration can be given as:

ak = ak−1 + qa (9)

where qa is the dynamic state noise of the acceleration. As the acceleration is very
sensitive, a small bias will lead to an integrated velocity and displacement with a large
offset. Meanwhile, the change of acceleration is very swift during the coseismic period;
it is difficult to determine the optimal dynamic state noise qa of the acceleration to
control the state transformation while using the traditional acceleration state Equation
(9). In this approach, the acceleration and baseline shifts are treated as a random walk
process, a transformation is made such that the baseline shifts’ corrected acceleration
ak−1
′ is used instead of the estimated acceleration ak−1 in the state equations, thus:

ak = (la(k) − uk−1) + qau (10a)

a′k−1 = (la(k) − uk−1) (10b)

qau = qu + qa0 (10c)

Here qau is the new dynamic state noise of the acceleration, it contains the dynamic
state noise qu of the baseline shift and the observation noise qa0 of the acceleration.
Hence, the new dynamic state noise qau is used instead of qa for the acceleration. As the
observation of the acceleration with a small noise, the main part of qau is the dynamic
state noise qu of the baseline shift, its variation is smaller than the acceleration and
easy to control (Tu et al., 2014).
Then, by the improved state Equation (10a), the state equations of the combined

system can be given as follows:

xk = Φk · xk−1 + φk · la(k) + εsk , εsk�N(0,Qsk
) (11)

Φk =

I τI 0 − 1
2
τ2I 0 0 0

0 I 0 −τI 0 0 0
0 0 0 −I 0 0 0
0 0 0 I 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1

2
6666666664

3
7777777775

(12)
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φk =

τ2

2
I

τI

I

0

0

0

0

2
6666666666664

3
7777777777775

(13)

Qsk =

τ4

20
Iqu

τ3

8
Iqu 0

τ2

6
Iqu 0 0 0

τ3

8
Iqu

τ2

3
Iqu 0

τ

2
Iqu 0 0 0

0 0 τIqau 0 0 0 0

τ2

6
Iqu

τ

2
Iqu 0 Iqu 0 0 0

0 0 0 0 τqz 0 0

0 0 0 0 0 τqt 0

0 0 0 0 0 0 0

2
66666666666666664

3
77777777777777775

(14)

where Φk is the dynamics transition matrix. It is emphasised that the third element
(acceleration) is zero, because for the state transition, the baseline shift corrected
acceleration Equation (10a) is introduced instead of the estimated acceleration
Equation (9) at the last epoch. Symbol φk is the acceleration input matrix, Qsk

is the
dynamic noise variance matrix, τ is the accelerometer sample interval, I is a 3×3
identity matrix, qz and qt are the dynamic noise variances for the tropospheric zenith
wet delay and receiver clock respectively.
With the combined observational Equations (4) and state Equation (11), a Kalman

filter can be employed to estimate the unknown parameters; it contains two steps of
prediction and filter (Yang et al., 2001).
Step one: prediction (a priori estimation)

xk = Φk · x̂k−1 +φk · la(k) (15)
Qk = Φk ·Qk−1 · ΦT

k +Qsk−1 (16)
Step two: filter (a posteriori estimation)

Qyk = P−1 +Mk ·Qk ·MT
k (17)

Qk = (Qk
−1 +MT

k ·Q−1
yk ·Mk)−1 (18)

x̂k = xk +Qk ·MT
k ·Q−1

yk · (yk −Mk · xk) (19)
where Qk is the variance of the filter system, symbol − represents the prediction
values, symbol ^ represents the filter values. The initial values of Q0 are given by the
experience values, two entries of X0, namely initial coordinates and receiver clock,
are determined by code-based positioning, the other entries are assigned as zero. It is
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emphasised that in this study, the acceleration vector is independent of other state
vectors (displacement, velocity), the correlations between acceleration state vector and
the current epoch’s accelerometer observations are not taken into account; we only
consider their correlation in the observation equations, so the customary procedures
of the Kalman filter can be applied.
The GPS sampling frequencies (several Hz) are traditionally lower than the

accelerometer sampling frequencies (80–200 Hz), thus the formulation needs to be
adapted to this multi-rate environment (Smyth and Wu, 2006) by performing the
prediction stage in Equations (15) and (16) at every time-step and applying the filter
update stage in Equations (17) to (19) only when a GPS sample becomes available.
The random model is usually determined as follows (Bock et al., 2011; Xu et al.,

2012):

pl = 1/ql =
1/ql0 θ 5 30°

1/(ql0 · 2 sin θ) θ , 30°

 !
(20a)

pp = 1/qp =
1/qp0 θ 5 30°

1/(qp0 · 2 sin θ) θ , 30°

 !
(20b)

pa = 1/qa0 (20c)
where ql0 , qp0

and qa0 are the observation noise variance of the phase, pseudorange
and acceleration observation, θ is the satellite elevation angle. Generally, the empirical
weights are not optimal for different types of observations, which means their unit
weight variances are not equal. We can use the Helmert method of variance
components estimation to adjust the random model (Cui et al., 2001).
Firstly, the observations of the combined system are divided into phase,

pseudorange and acceleration, the empirical weight as in Equation (20) is used for
the filter estimation. The variance of the unit weight is computed by using the
simplified Helmert formula for each kind of observations, such that:

vk = Mk · x̂k −yk, δ20i =
VT

i PiVi

ni
(21)

here vk is the observation residuals at epoch k for all the observations (contain three
types of observations); Vi is the observation residuals for each type of observation
(only phase or only pseudorange or only acceleration observations); Pi is the empirical
weight for each kind of observation; ni is the numbers for each kind of observation; δ20i
is the variance of the unit weight for each kind of observation, i represents the type of
observation.
Secondly, determine the new weights for each type of observation,

P̂i = C

δ̂
2
0i P

−1
i

(22)

where C is a constant, its value can be determined by one of the variance of the unit
weight.
Thirdly, iterate for steps one and two until all the variance of the unit weight is equal

or approximately equal, then update for the next epoch. While using the a posteriori
estimation, the random model of the combined system is more objective and the filter
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results are more robust. On one side, if there is no earthquake event, the high-rate
acceleration observations of the accelerometer will give a strong constraint on the
station state vector, leading to a significant improvement in both convergence time
and position accuracy. On the other side, the high precision GPS will contribute by
recognising and correcting the accelerometer’s baseline shifts when the earthquake
occurs.

3. EXPERIMENTAL ANALYSIS . Figure 1 shows the platform that we
used in the experiment carried out in December 2012. The platform, which can slide
along a table, includes a dynamic GPS antenna (Type: JAV_RINGANT_G3T
NONE), a low-cost MEMS-type accelerometer (Fleming et al., 2009) and a high-
precision accelerometer (CMG-5 T Compact made by Guralp Systems Ltd). The
sampling rate is 50 Hz for the GPS and 100 Hz for the accelerometer. The maximum
sliding distance of the platform is restricted to about 0·5 m. As the ultra-high-rate GPS
has much larger noise, the GPS data is decimated to 5 Hz for the data analysis. Precise
ephemeris and other positioning products are provided by the International GNSS
Service (IGS), and the data is processed in a simulated real-time mode. We simulated
eight experiments by moving the platform from one side to the other, the reference
displacements are recorded by the vernier calliper which is fixed on the table. For each
experiment, we initially kept the rig static at the start point for about five minutes;
secondly, we slid the combined instruments from the start point to the end point over
about one minute; thirdly, the rig was kept static at the end point for about five
minutes; finally, the rig was returned to the start point for the next experiment. For the
eighth experiment, it was not returned to the start point, as this was the end of the
experiment. In addition, we only analysed the data recorded by the MEMS sensor
(SM1), as the data recorded by the Guralp sensor (SM2) is little better than the
MEMS sensor and had no substantial difference for the retrieved results, but as this
sensor is more expensive than MEMS sensors, they are not commonly used.

Figure 1. The experiment platform consisting of a GPS receiver, a low-cost accelerometer of the
MEMS type (SM1) and a high-precision accelerometer of the Guralp type (SM2).
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Figure 2 shows the acceleration, velocity and displacement of all experiments.
Figure 2(a) shows the raw acceleration records (black) and the estimated baseline shift
corrections (red). Due to the reasons of instrument instalment and environmental
variations, the raw acceleration has a large initial baseline shift (about 1·17 m/s2).
Meanwhile, these baseline shifts changed following the ground motion. Figures 2(b)
and 2(c) are the time series of the corrected acceleration and velocity. We can see that
the values are around zero when there is no movement. Figure 2(d) shows the time
series of the corrected displacement. The details of each simulation will be discussed
below.
Figure 3 shows the details of the first experiment. Though the velocity and

acceleration by the GPS-only system are very noisy, the displacement reflects
the reality with an uncertainty of a few centimetres (in Figure 3(a)). In contrast, the
accelerometer-based acceleration has a much higher signal-to-noise ratio, but the
integrated velocity and displacement have a larger offset than that of the GPS
(in Figure 3(b)). While for the combination of the two measurements, not only the
velocity and acceleration are recovered, but also the displacement with much smaller
noise (in Figure 3(c)). Meanwhile, the baseline shift corrections are compared in
Figures 3(d) and (e) between the empirical method of Wang et al. (2011) and the new
approach. For the empirical methods, the baseline shift correction of the acceleration
is divided into three parts, the pre-event, transient part and post-event according to
the characteristics of the acceleration, and corrected the integrated velocity with
a continuous double broken line (Wang et al., 2011), this is shown in Figure 3(d). This
means that the baseline shifts of the acceleration are treated as a constant in the

Figure 2. The results of the experiment. (a) The raw acceleration records (black) and the estimated
baseline shifts (red), (b) The corrected acceleration, (c) The corrected velocity, (d) The corrected
displacement. The symbol “Ti” represents the number of the experiment.
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coseismic period, but the tilting and/or rotation of the instrument is not a simple event
since the ground is shaking during the whole coseismic period, the baseline shifts are
changing all the time, these empirical methods are not objective and have large
uncertainties. For the new approach, the baseline shifts of the acceleration are
estimated and corrected as continuous unknown parameters, shown in Figure 3(e). It
is less subjective and more accurate to describe the baseline shifts, so the combined
system can obtain the optimal displacement, velocity and acceleration information,
as shown in Figure 3(c).
In Figure 4, we summarise the results from the tight integration data processing for

all the other seven experiments. As expected, the baseline shifts of the accelerations are
recognised and corrected; the post-seismic velocity varies approximately around zero,
while the displacement converges to the reference values. The Root Mean Square
(RMS) deviation between the recovered and reference displacements is below 2·0 cm.
As in the experiment, the platform is fixed on the ground, and the baseline shifts are
mainly caused by the tilting of the platform. As proposed by Geng et al. (2013b), these
tilts can be estimated from collocated high-rate GPS and accelerometers, they are
physical quantities and meaningful to rotational seismology. By analysis of the

Figure 3. The example of the first experiment. (a), (b), (c) are the results retrieved by GPS,
accelerometer and the combined system, from left to right are the time series of displacement,
velocity and acceleration respectively; (d) is the velocity correction line by the empirical method of
Wang et al. (2011), (e) is the acceleration correction line by the new approach; the red line marks
the displacement reference value.
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recognised baseline shifts, we may find that they have nearly the same variation
tendency with the movements. Before the slip, there are only stable initial baseline
shifts. When the instruments begin to slip, the transient baseline shifts emerge and
change following the movements; the post-seismic baseline shifts are also stable after
the slip. In experiments six and seven, the permanent displacements are zero, so the
baseline shifts are nearly the same between the post-seismic and pre-seismic periods.
Though the baseline shifts are very complex in the coseismic period, we also find that
they have strong correlations with the ground motion, so the empirical methods of
double broken line correction are neither objective nor accurate. These experimental
results have shown that the tight integration of the two measurements are able to
recognise and correct the accelerometer’s baseline shifts, meanwhile, high precision of
ground motion information can be obtained in real-time.
Figures 5(a) and (b) show the comparison of the PPP’s convergence. It can be seen

that the PPP convergence speed is improved after the integration of the GPS and
accelerometer records, especially in the east-west (red line) and vertical (blue line)
components. Meanwhile, the STD of the noise are reduced from (0·019, 0·012, 0·032)
m to (0·003, 0·004, 0·008) m in ENU components respectively. In Figure 5(c), the zenith
wet delay of the tropospheric shows nearly no convergence process for the combined
system, and it is more stable; the STD of the noise is improved from 0·005 m to 0·001 m.
Hence, the high resolution acceleration also contributes to the PPP solution.

Figure 4. Results from all other seven experiments. From left to right are the time series of
estimated baseline shifts, velocity and displacement respectively. From top to bottom are the
experiments from two to eight respectively. The red lines mark the displacement reference values,
symbol “Ti” represents the number of the experiment.

878 RUI TU AND KEJIE CHEN VOL. 67

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0373463314000150
Downloaded from https://www.cambridge.org/core. IP address: 222.248.34.220, on 08 Mar 2020 at 11:27:44, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0373463314000150
https://www.cambridge.org/core


4. CONCLUSIONS AND DISCUSSIONS. We have proposed a new
approach of tight integration process of collocated high-rate GPS and accelerometer
measurements and validated it by several experiments. The acceleration records
collected from the accelerometer are integrated into the PPP solution model,
meanwhile, the baseline shifts are estimated as unknown parameters like coordinates
and ambiguities, the Kalman filter is employed for the real-time solution and the
a posteriori estimation is used to adjust the random model. The experimental results
show that the tightly integrated system can complement the advantages of each
component completely. For the accelerometer, the baseline shifts are estimated and
corrected, high-precision velocity and displacement are recovered. As the baseline
shifts are not always present, it is best to firstly detect whether the baseline shifts
have happened and how significant they are and then adaptively estimate and
correct them. The transient baseline shifts are very small, of the order of maybe
10–3m/s2 to 10–5 m/s2 and it is very difficult to detect them precisely. Moreover, the
baseline shifts are mostly caused by the instrument tilts. Recovering coseismic point
ground tilts from collocated GPS and accelerometers is more meaningful to rotational
seismology (Geng et al., 2013(b)). For the GPS, the PPP convergence speed and
precision are improved. For the combined system, four time series in the form of
displacement, velocity, acceleration and baseline errors are obtained in real-time with
high precision.
In comparison with the previous integration methods, which are mostly used for

a loose integration of the two measurement systems in the post-processing domain, the
present method can be used for a real-time integration in the raw observation domain.
In addition, comparison with the empirical baseline shift correction methods, which
use the empirical double broken line to correct the velocity, the present method
estimated and corrected the transient baseline shifts of the accelerations in real-time,
and is more objective and accurate. The test results have shown that by using the
integrated data processing technology, it preserves the best and avoids the worst
characteristics of each sensor, real-time and broadband ground motion information
can be provided reliably, which has an important impact in earthquake monitoring
and provision of early warning.
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Figure 5. The comparison of the PPP convergence speed and tropospheric zenith wet delay.
(a) Left: the PPP convergence process by GPS-only data; (b) Middle: the PPP convergence process
by the integration of GPS and accelerometer data; (c) Right: the comparison of the tropospheric
zenith wet delay.
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