已提交论文
[S4] Xie, J., X. Ding, and S. Xu, Slip behaviors controlled by rheological and compositional properties of a two‐phase mélange in subduction shear zone, submitted to Geophysical Journal International, on November 3, 2024.
[S3] Xia, T., L. Ye, Y. Bai, T. Lay, S. Xu, H. Kanamori, L. Rivera, and S. P. D. Sriyanto, The 2022 Mw 7.3 Southern Sumatra Tsunami Earthquake: Rupture Up-dip of the 2007 Mw 8.4 Bengkulu Event, revision submitted to Journal of Geophysical Research: Solid Earth, on November 2, 2024.
[S2] Xu, S., Does stress drop positively or negatively correlate with rupture speed?, revision submitted to Journal of Geophysical Research: Solid Earth, on January 31, 2024.
[S1] Ji, Y., A. R. Niemeijer, D. H. Baden, F. Yamashita, S. Xu, L. B. Hunfeld, R. P. J. Pijnenburg, E. Fukuyama, and C. J. Spiers, Friction law for earthquake nucleation: size doesn’t matter, submitted on February 2, 2022, in review.
[S0] Fukuyama, E., S. Xu, and F. Yamashita, Supersonic propagation of slow slip rupture during rock friction experiments, submitted, 2020.
同行评审论文
[33] Gong, W., L. Ye, S. Xu, Y. Tan, and X. Chen (2024), Rupture Behaviors of the Southern Xianshuihe Fault and Seismicity around Mt. Gongga: Insights from the 2022 Mw 6.6 Luding (China) Earthquake Sequence, Tectonophysics, 892, 230538, doi:10.1016/j.tecto.2024.230538.
[32] Ding, X., S. Xu, E. Fukuyama, and F. Yamashita (2024), Back-Propagating Rupture: Nature, Excitation, and Implications, Journal of Geophysical Research: Solid Earth, 129, e2024JB029629, doi:10.1029/2024JB029629.
[31] Wang, L., S. Xu, Y. Zhuo, P. Liu, and S. Ma (2024), Unraveling the roles of fault asperities over earthquake cycles, Earth and Planetary Science Letters, 636, 118711, doi:10.1016/j.epsl.2024.118711.
[30] Wang, Q., Y. Zhang, L. Wang, P. Yu, S. Guerin-Marthe, X. Peng, S. Xu, P. Martínez-Garzón, and M. Bohnhoff (2024), Evolution of shear rupture along a prescribed interface using the Discontinuous Deformation Analysis method, Rock Mechanics and Rock Engineering, doi:10.1007/s00603-024-03897-4.
[29] Liu-Zeng, J., Z. Liu, X. Liu, C. Milliner, A. Rodriguez Padilla, S. Xu, J.-P. Avouac, W. Yao, Y. Klinger, L. Han, Y. Shao, X. Yan, S. Aati, and Z. Shao (2024), Fault orientation trumps fault maturity in controlling coseismic rupture characteristics of the 2021 Maduo earthquake, AGU Advances, 5(2), doi:10.1029/2023AV001134.
[28] Wan, Z., R. Dong, D. Wang, S. Xu, Z. Wang, and Q. Wang (2024), Along-strike Variation of Rupture Characteristics and Aftershock Patterns of the 2023 Mw 7.8 Türkiye Earthquake Controlled by Fault Structure, Seismological Research Letters, 95(4), 2071–2080, doi:10.1785/0220230378.
[27] Lu, R., Y. Gao, Y. Hu, X. Lai, H. Li, J. Lu, L. Shao, P. Wang, W. Wang, W. Wang, C. Xia, H. Xu, R. Xu, S. Xu, H. Yue, L. Zhao, X. Zheng, E. Zhou, and Y. Zou (2024), Quakes: from the Earth to Stars, Scientia Sinica Physica, Mechanica & Astronomica, doi:10.1360/SSPMA-2023-0424. [路瑞鹏, 高勇, 胡岩, 来小禹, 李洪波, 卢吉光, 邵立晶, 王平, 汪卫华, 王维扬, 夏铖君, 胥恒, 徐仁新, 徐世庆, 岳汉, 赵里, 郑小平, 周恩平, 邹远川. 从地震到星震. 中国科学: 物理学 力学 天文学, 2024]
[26] Ding, X., J. Xie, and S. Xu (2024), Dynamic activation of near-orthogonal conjugate faults during earthquakes: Insights from the 2023 Türkiye Mw 7.6 earthquake, Chinese Science Bulletin, 69(11), 1501–1516, doi:10.1360/TB-2023-0894. [丁啸天, 谢军, 徐世庆. 近垂直共轭断层在地震中的动态激活: 来自2023年土耳其Mw 7.6地震的启示. 科学通报, 2024: 69(11), 1501–1516]
[25] Ding, X., S. Xu, Y. Xie, M. van den Ende, J. Premus, and J.-P. Ampuero (2023), The sharp turn: Backward rupture branching during the 2023 Mw 7.8 Kahramanmaraş (Türkiye) earthquake, Seismica, 2(3), doi:10.26443/seismica.v2i3.1083. Preprint link: https://arxiv.org/abs/2307.06051
[24] Cheng, C., D. Wang, Q. Yao, L. Fang, S. Xu, Z. Huang, T. Liu, Z. Wang, and X. Huang (2023), The 2021 Mw 7.3 Madoi, China earthquake: Transient supershear ruptures on a presumed immature strike-slip fault, Journal of Geophysical Research: Solid Earth, Special Issue "100-Year Anniversary of the Great 1920 Haiyuan Earthquake: What Have We Learned on Large Continental Earthquakes and Faults?", 128, e2022JB024641, doi:10.1029/2022JB024641.
[23] Xu, S., E. Fukuyama, F. Yamashita, H. Kawakata, K. Mizoguchi, and S. Takizawa (2023), Fault strength and rupture process controlled by fault surface topography, Nature Geoscience, 16, 94–100, doi:10.1038/s41561-022-01093-z.
[22] Yamashita, F., E. Fukuyama, and S. Xu (2022), Foreshock activity promoted by locally elevated loading rate on a 4-meter-long laboratory fault, Journal of Geophysical Research: Solid Earth, 127(3), e2021JB023336, doi:10.1029/2021JB023336.
[21] Yoshida, K., N. Uchida, H. Kubo, R. Takagi, and S. Xu (2022), Prevalence of updip rupture propagation in interplate earthquakes along the Japan Trench, Earth and Planetary Science Letters, 578, 117306, doi:10.1016/j.epsl.2021.117306.
[20] Yamashita, F., E. Fukuyama, S. Xu, H. Kawakata, K. Mizoguchi, and S. Takizawa (2021), Two end-member earthquake preparations illuminated by foreshock activity on a meter-scale laboratory fault, Nature Communications, 12, 4302, doi:10.1038/s41467-021-24625-4.
[19] Xu, S. (2020), Recognizing fracture pattern signatures contributed by seismic loadings, Interpretation, Special Issue "Seismic interpretation of fractures in deep subsurface", 8(4), SP95–SP108, doi:10.1190/int-2020-0033.1. Preprint link: https://eartharxiv.org/repository/view/308/
[18] Xu, S., E. Fukuyama, F. Yamashita, and S. Takizawa (2019), Evolution of Fault-Interface Rayleigh Wave speed over simulated earthquake cycles in the lab: Observations, interpretations, and implications, Earth and Planetary Science Letters, 524, 115720, doi:10.1016/j.epsl.2019.115720.
[17] Xu, S. (2019), Probing earthquake physics using multidisciplinary approaches, Zisin, 72(2), 17–34, doi:10.4294/zisin.2018-12.
[16] Xu, S., E. Fukuyama, and F. Yamashita (2019), Robust estimation of rupture properties at propagating front of laboratory earthquakes, Journal of Geophysical Research: Solid Earth, 124(1), 766–787, doi:10.1029/2018JB016797.
[15] Xu, S., E. Fukuyama, A. Sagy, and M.-L. Doan (2018), Preface: Physics of Earthquake Rupture Propagation, Tectonophysics, Special Issue "Physics of Earthquake Rupture Propagation", 733, 1–3, doi:10.1016/j.tecto.2018.04.013.
[14] Yamashita, F., E. Fukuyama, S. Xu, K. Mizoguchi, H. Kawakata, and S. Takizawa (2018), Rupture preparation process controlled by surface roughness on meter-scale laboratory fault, Tectonophysics, Special Issue "Physics of Earthquake Rupture Propagation", 733, 193–208, doi:10.1016/j.tecto.2018.01.034.
[13] Fukuyama, E., K. Tsuchida, H. Kawakata, F. Yamashita, K. Mizoguchi, and S. Xu (2018), Spatiotemporal complexity of 2-D rupture nucleation process observed by direct monitoring during large-scale biaxial rock friction experiments, Tectonophysics, Special Issue "Physics of Earthquake Rupture Propagation", 733, 182–192, doi:10.1016/j.tecto.2017.12.023.
[12] Xu, S., E. Fukuyama, F. Yamashita, K. Mizoguchi, S. Takizawa, and H. Kawakata (2018), Strain rate effect on fault slip and rupture evolution: Insight from meter-scale rock friction experiments, Tectonophysics, Special Issue "Physics of Earthquake Rupture Propagation", 733, 209-231, doi:10.1016/j.tecto.2017.11.039.
[11] Aldam, M., S. Xu, E.A. Brener, Y. Ben-Zion, and E. Bouchbinder (2018), Non-monotonicity of the frictional bimaterial effect, Journal of Geophysical Research: Solid Earth, 122(10), 8270–8284, doi:10.1002/2017JB014665.
[10] Xu, S., and Y. Ben-Zion (2017), Theoretical constraints on dynamic pulverization of fault zone rocks, Geophysical Journal International, 209(1), 282–296, doi:10.1093/gji/ggx033.
[9] Xu, S., E. Fukuyama, H. Yue, and J.-P. Ampuero (2016), Simple crack models explain deformation induced by subduction zone megathrust earthquakes, Bulletin of the Seismological Society of America, 106(5), 2275–2289, doi:10.1785/0120160079.
[8] Fukuyama, E., S. Xu, F. Yamashita, and K. Mizoguchi (2016), Cohesive zone length of metagabbro at supershear rupture velocity, Journal of Seismology, Special Issue "Imaging Earthquakes and Earth Structure Through Waves" Honoring Professor Raul Madariaga, 20(4), 1207–1215, doi:10.1007/s10950-016-9588-2.
[7] Yamashita, F., E. Fukuyama, K. Mizoguchi, S. Takizawa, S. Xu, and H. Kawakata (2015), Scale dependence of rock friction at high work rate, Nature, 528, 254–257, doi:10.1038/nature16138.
[6] Xu, S., E. Fukuyama, Y. Ben-Zion, and J.-P. Ampuero (2015), Dynamic rupture activation of backthrust fault branching, Tectonophysics, 644–645, 161–183, doi: 10.1016/j.tecto.2015.01.011.
[5] Xu, S., Y. Ben-Zion, J.-P. Ampuero, and V. Lyakhovsky (2015), Dynamic ruptures on a frictional interface with off-fault brittle damage: Feedback mechanisms and effects on slip and near-fault motion, Pure and Applied Geophysics, 172, 1243–1267, doi: 10.1007/s00024-014-0923-7.
[4] Xu, S., and Y. Ben-Zion (2013), Numerical and theoretical analyses of in-plane dynamic rupture on a frictional interface and off-fault yielding patterns at different scales, Geophysical Journal International, 193, 304–320, doi: 10.1093/gji/ggs105.
[3] Xu, S., Y. Ben-Zion, and J.-P. Ampuero (2012b), Properties of inelastic yielding zones generated by in-plane dynamic ruptures: II. Detailed parameter-space study, Geophysical Journal International, 191, 1343–1360, doi: 10.1111/j.1365-246X.2012.05685.x.
[2] Xu, S., Y. Ben-Zion, and J.-P. Ampuero (2012a), Properties of inelastic yielding zones generated by in-plane dynamic ruptures: I. Model description and basic results, Geophysical Journal International, 191, 1325-1342, doi: 10.1111/j.1365-246X.2012.05679.x.
[1] Ben-Zion, Y., T. Rockwell, Z. Shi, and S. Xu (2012), Reversed-polarity secondary deformation structures near fault stepovers, Journal of Applied Mechanics, Special Issue Honoring Professor James R. Rice, 79(3), 031025, doi:10.1115/1.4006154.