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A B S T R A C T

In situ stress is an important parameter in rock mechanics, and reliable estimates of far-field stresses are in-
dispensable for robust rock engineering analysis. Here, by using the combined finite-discrete element method,
we simulate a series of stress fields of both synthetic and natural fracture networks to examine whether the
Euclidean mean of local stresses can be used to estimate the far-field stress. The calculations show that given a
large number of local stress measurements, their Euclidean mean gives a close approximation of the far-field
stress state. Whereas when only a limited number of local stresses are available, the probability of obtaining a
practically acceptable estimate of far-field stress increases when more stress measurements are involved. The
required number of stress measurements for deriving an acceptable estimate varies with the geomechanical
condition; in general, the larger the overall stress variability is, the more local stress measurements are needed.
Our research findings suggest that given a limited number of stress measurements, which is often encountered in
rock engineering projects, attention is needed when deriving the far-field stress state based on them, and simply
using their mean as far-field stress for further rock structure design and numerical analysis may yield erroneous
results.

1. Introduction

Rock masses are stressed in their natural state, mainly due to the
overburden and tectonic effects [1]. The understanding of the in situ
stress state is thus important for many rock mechanics problems, in-
cluding geotechnical engineering design, hydraulic fracturing analysis,
rock mass permeability, and earthquake potential evaluation [1–4].
Given the fact that the far-field stresses related to plate-driving forces
are typically uniform over the lithospheric scale [5], in such stress-re-
lated applications, it is common to assume in many analytical methods
and numerical simulations that the problem domain of interest is sub-
jected to far-field stress loadings such that the response of rock masses
associated with geological features (e.g. folds, faults, intrusions) or
artificial structures (e.g. tunnels, caverns, mines, surface excavations) is
further analyzed [6–12]. One succinct example is the use of Kirsch
solution to calculate the stress distribution around a circular opening
inside a rock medium sustaining far-field stresses [13]. Thus, the far-
field stress state is an important input parameter for many rock me-
chanics analyses [3,7,8,14–17], and reliable estimate of it is indis-
pensable for robust evaluation of rock mass behavior.

The far-field stress state of a geological investigation region is often
interpreted by referring to the local stress measurements. However, due
to the inherent heterogeneity and anisotropy of fractured rock masses,
the in situ stress field often displays significant variability [18–24], and
so the relationship between far-field stress and local stresses is ob-
scured. Particularly, it is not clear if a reliable estimate of far-field stress
can be attained when facing the common rock engineering situation
where only a limited number of local in situ stress measurements are
available. Therefore, it is essential that a systematic study of this pro-
blem can be conducted.

Here, using the tensor-based mean stress calculation approach –
Euclidean mean – developed earlier [25–27] and the hybrid finite-dis-
crete element method (FDEM) [28], we simulate and analyze the stress
fields of different fractured rock mass systems based on synthetic and
natural fracture networks. We examine whether the Euclidean mean of
local stresses in a rock mass can be used as an acceptable estimate of the
far-field stress. A major benefit of this approach is that we can fully
resolve the local stress field with respect to various prescribed far-field
stress conditions, which allows us to elucidate their interrelationship
quantitatively and systematically. In this study, we focus on the two-

https://doi.org/10.1016/j.compgeo.2019.103188
Received 16 February 2019; Received in revised form 21 June 2019; Accepted 29 July 2019

⁎ Corresponding author.
E-mail address: qinghua.lei@erdw.ethz.ch (Q. Lei).

Computers and Geotechnics 116 (2019) 103188

0266-352X/ © 2019 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/0266352X
https://www.elsevier.com/locate/compgeo
https://doi.org/10.1016/j.compgeo.2019.103188
https://doi.org/10.1016/j.compgeo.2019.103188
mailto:qinghua.lei@erdw.ethz.ch
https://doi.org/10.1016/j.compgeo.2019.103188
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compgeo.2019.103188&domain=pdf


dimensional (2D) analysis, which is applicable for cases such as sedi-
mentary formations whose longitudinal characteristic scale is much
larger than their transversal one. We assume that the in situ stress field
in the fractured rock develops entirely based on the imposed con-
temporary tectonic stresses, whereas the possible residual stress effect is
omitted.

In the following sections, we first give a brief description of the
FDEM method, the generation of synthetic and natural fracture net-
works, and the Euclidean mean stress calculation approach. Then, we
calculate the Euclidean mean of all the simulated local stress tensors in
each simulation, and compare it with the prescribed far-field stress to
examine their equality. Further, we randomly sample a certain number
of local stresses and compare their mean with the far-field stresses to
investigate how reliable the Euclidean mean of local stresses is for far-
field stress estimation and how it depends on the sampling size. Finally,
we aim to provide suggestions for estimating appropriate far-field stress
in practical rock engineering applications.

2. Stress computation and analysis approaches

2.1. Numerical method for stress computation

The local stress data for mean stress calculation and comparison
with far-field stress in the present study are obtained from a series of
numerical simulations, which use a 2D FDEM model to determine how
stresses are distributed in fractured rock masses when subjected to
different far-field stresses. The FDEM method was originally developed
by Munjiza and his colleagues, which combines the advantages of both
the finite element method (FEM) and discrete element method (DEM)
[28–33]. In FDEM, the FEM module simulates continuum problems
(e.g. stress and strain) and the DEM module handles discontinuum
processes (e.g. contact and interaction) (Fig. 1) [28]. In the FDEM
framework, a 2D fractured rock mass is represented using a fully dis-
continuous mesh of three-node triangular finite elements, which are
linked by four-node crack elements (Fig. 1).

The motions of finite elements are governed by the forces acting on
elemental nodes. The governing equation is given by [28]:

+ =Mẍ f f ,int ext (1)

where M is the lumped nodal mass matrix, x is the vector of nodal
displacements, fint are the internal nodal forces induced by the de-
formation of triangular elements, fext are the external nodal forces in-
cluding external loads fa contributed by boundary conditions and body
forces, cohesive bonding forces fb caused by the deformation of crack
elements, and contact forces fc generated by the contact interaction
between adjacent elements located along two sides of fractures. The

equations of motion of the FDEM system are solved by an explicit time
integration scheme based on the forward Euler method.

The intact rock is assumed to be isotropic and homogeneous, and a
Mohr-Coulomb model with tension cut-off is employed to define its
shear and tensile strength [34]. The deformation of the bulk material is
captured by the linear-elastic constant-strain triangular finite elements
with the impenetrability enforced by a penalty function and the con-
tinuity constrained by bonding forces of crack elements [35]. FDEM
allows explicit geometric realization of fracture patterns. Particularly,
the embedded combined single and smeared crack model permits the
simulator to capture the emergence of new fractures driven by stress
concentrations [35], which eliminates unrealistic stress singularities at
fracture tips and thus makes it an ideal tool for stress computation [23].
Some limitations may be present in FDEM simulation. For example, the
results of fracture initiation and propagation are constrained by ele-
mental edges and may thus be affected by mesh discretization. To
minimize such an effect, we choose an element size that is small enough
to suppress the potential mesh-dependency via mesh sensitivity ana-
lysis. The accuracy of FDEM for stress simulation has been validated in
our previous work [24], which shows great agreements with analytical
solutions for stress distribution around single fracture under various far-
field loadings.

2.2. Numerical model setup

2.2.1. The synthetic fracture networks
We simulate the geometry of fracture networks in granitic rocks

using the synthetic fracture network model following a power-law
length scaling given by [36]:

=n l L L l l l l( , ) , for [ , ],D a
min max (2)

where n l L dl( , ) is the number of fractures with sizes l belonging to the
interval +l l dl dl l[ , ]( ) in an elementary volume of characteristic size
L, D is the fractal dimension, a is the power-law length exponent, and
is the density term. The only intrinsic characteristic length scales in this
model are the smallest and largest fracture lengths, i.e. lmin and lmax,
respectively. In numerical simulations, L is the scale of the modeling
domain, which usually meets l L lmin max. The exponents D and a
quantify different scaling aspects of fracture networks: the fracture
density (related to D) and the length distribution (related to a). Ex-
tensive outcrop data suggest that generally D varies between 1.5 and
2.0, and a falls between 1.3 and 3.5 [36]. Fracture intensity is defined
as the total length of fractures per unit area. The mean fracture intensity
¯ of a fracture network within a square domain of size L is calculated as:

=
L

n l L l dl¯ 1 ( , )
A2 L (3)

where l denotes the fracture length included in the domain of an area
=A LL

2.
The 2D models with synthetic fracture networks are generated in a

square domain of size L=10m (Fig. 2), in which the location and
orientation of fractures are assumed to be completely random, i.e.
nominally homogeneous (i.e. D=2.0) and isotropic. The bounds of
fracture lengths are given by lmin = L/50= 0.2m and
lmax =50L=500m. We explore five different length exponent cases,
i.e. a=1.5, 2.0 2.5, 3.0 and 3.5, and two different mean fracture in-
tensity scenarios, i.e. ¯ =2.5 and 5.0m−1. The generated fracture
networks are presented in Fig. 2. For small a, the rock mass is domi-
nated by long fractures. With the increase of a, more short fractures are
introduced. Also, when ¯ is increased from 2.5 to 5.0 m−1, more den-
sely distributed fractures can be observed. For each combination of a
and ¯ , we generate ten realizations, and thus a total of 100 synthetic
fracture rock mass models are created. It is worth mentioning that, to
avoid low quality elements in later mesh generation, a set of automated
geometrical modification algorithms as proposed by Mayer et al. [37]
have been implemented into the synthetic fracture network generator

fracture

elastic triangle
element

four-node
crack element

existing fractures

fractured rock mass

discontinuum
( )DEM

continuum ( )FEM

node

Fig. 1. Schematic illustration of FEM and DEM modules in FDEM. The trian-
gular elements along two sides of the fracture are treated as discrete elements,
while other places are handled in a finite element manner with a four-node
crack element inserted between adjacent triangular elements [23].
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such that the scenarios of closely spaced fractures and fractures inter-
secting at tiny angles are eliminated.

The material properties of the granitic rock are assumed as follows
[2]: the bulk density is 2,700 kg/m3, the Young’s modulus is 50.0 GPa,
the Poisson’s ratio is 0.25, the internal friction coefficient is 1.0, the
tensile strength is 20.0MPa, the cohesive strength is 40.0MPa, and the
mode I and II energy release rates are 158.4 and 198.0 J/m2, respec-
tively. The frictional sliding on fractures obeys the Coulomb criterion
with a friction coefficient of µ =0.85 [38]. A penalty parameter with a
value 10 times of the Young’s modulus is employed by compromising
between achieving the correct elastic response among contacting ele-
ments and maximizing the time step size to reduce the overall com-
putational expense. The selected penalty parameter is within the rea-
sonable range according to [28,39]. Each model is discretized using an
approximately uniform, unstructured mesh with an average element
size of 0.05m. As a result, a total of more than 70,000 triangular ele-
ments have been generated for each model.

Far-field stresses are applied orthogonally to the model boundaries
(Fig. 2), and we consider three scenarios: (i) 1 =5.0MPa,

2 =5.0MPa, (ii) 1 =10.0MPa, 2 =5.0MPa, and (iii)
1 =15.0MPa, 2 =5.0MPa, corresponding to stress ratios

/1 2 =1.0, 2.0, and 3.0, respectively. Here, for simplicity and con-
venience, we use the orientation of 1 , denoted by , to represent the
orientation of far-field stress, as the trend of 2 can then be acquired
accordingly. For the current case in which the 1 is acting in the x-
direction, when using the geological convention of clockwise positive
from North (Fig. 2), the orientation of 1 is marked as = 90°.

2.2.2. The natural fracture networks
We also construct realistic fracture network models based on a real

outcrop of natural fractures, e.g. an 18m×18m outcrop map of a
Devonian age sandstone located at the Hornelen Basin, western Norway
[40] (Fig. 3a). This fracture pattern consists of more than 2,000 joints
which are mostly perpendicular to the bedding and can be grouped into
three major sets with their mean set orientations of being 40°, 85° and
150° (clockwise positive from North) (Fig. 3). The formation of this
fracture system was interpreted as the result of stress release on uplift
and erosion [40].

The material properties of the fractured Hornelen sandstone are
assumed as follows [41]: the bulk density is 2,500 kg/m3, the Young’s
modulus is 20.0 GPa, the Poisson’s ratio is 0.25, the internal friction
coefficient is 1.0, the tensile strength is 20.0MPa, the internal cohesive
strength is 40.0MPa, the joint friction coefficient is 0.85, and the mode

I and II energy release rates are 396.1 and 495.1 J/m2, respectively. The
penalty parameter is also chosen to be 10 times of the Young’s modulus.
The Hornelen model is discretized using an approximately uniform,
unstructured triangular meshes with an average element size of
0.075m (around 108,000 elements in total). The elements size for the
Hornelen model is carefully chosen to be small enough to avoid highly
skewed triangular elements and also by considering the computation
expense and the resolution of the resulting stress data through a series
of mesh sensitivity analyses [42].

Same as the synthetic fracture models, three far-field stress sce-
narios are explored on the Hornelen model: (i) 1 =5.0MPa,

2 =5.0MPa, (ii) 1 =10.0MPa, 2 =5.0MPa, and (iii)
1 =15.0MPa, 2 =5.0MPa. Considering the anisotropy feature of
the natural fracture system, we study various far-field stress loading
conditions imposed at a range of angles to the domain. First, the 1 and

2 are acting in the y- and x-direction, respectively, on the model
boundaries. Following this, a series of other simulations are conducted
by rotating the far-field stresses clockwise for 170° with a step size of
10°, as demonstrated in Fig. 3b. Using the same convention as in the
previous section, the orientations of 1 for the current simulations are
thus = ° ° ° … °0 , 10 , 20 , , 170 . The far-field stress rotation is im-
plemented by first calculating the stress tensor corresponding to each
rotated far-field stress in the x-y coordinate system, then the normal and
shear components of the calculated stress tensor are added to the
boundaries of the rock mass in the form of normal and shear compo-
nents, respectively (Fig. 3b). Note that for /1 2 =1 (i.e.

=1 2 =5.0MPa), no far-field stress rotation is needed. In each si-
mulation, the far-field stresses are imposed uniformly along the
boundary of the rock mass via a ramped stage to eliminate dynamic
effects. When the model attains equilibrium, stress tensors at each
element are extracted for further tensorial analysis.

Additionally, we have conducted simulations on two other natural
fracture networks – the Kilve and Bristol models (see Appendix C) – to
further examine the conclusions drawn from the Hornelen natural
fracture model.

2.3. Euclidean mean stress calculation

In conventional rock stress analysis, stress magnitude and orienta-
tion are customarily processed separately [43–47], which essentially
decomposes the stress tensor into scalar (principal stress magnitudes)
and vector (principal stress orientations) components, and statistically
analyses them using classical statistics [48] and directional statistics
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Fig. 2. The geometry of generated synthetic fracture networks in granite (domain size L=10m) associated with various power-law length exponent a and mean
fracture intensity ¯ . The small shaded block on the left side indicates the far-field stress imposed on the models.
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[49], respectively. However, it has been demonstrated that this cus-
tomary scalar/vector approach violates the tensorial nature of stress
and may yield erroneous results, especially for the mean stress calcu-
lation [27]. One manifest drawback of it is that the orthogonality of
calculated mean principal stresses is not guaranteed [27].

Since stress is a second-order tensor, statistical analysis of it should
be conducted based on the tensors referred to a common Cartesian
coordinate system [50]. By considering the tensorial nature of stress,
the mean stress – so-called Euclidean mean – has been derived in a
tensorial manner based on the distance measure between stress tensors
in Euclidean space [26]. For example, let the ith stress tensor Si be
denoted by

= symS .i
x xy

y
i i

i (4)

where and are the normal and shear components, respectively. Then
the Euclidean mean stress can be calculated by averaging each tensor
component, i.e.

= = =
=

= =
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where S̄ denotes the Euclidean mean stress tensor, and ¯ and ¯ are the
corresponding mean components.

To facilitate comparison between the calculated Euclidean mean of
simulated stress data and the prescribed far-field stress imposed on the
rock mass model, the eigenvalues and eigenvectors of the Euclidean
mean, which represent the magnitudes and orientations of the principal
mean stresses, are calculated. The major and minor principal stress
magnitudes of the Euclidean mean are denoted as ¯1 and ¯2, respec-
tively. Also, for convenience, we use the trend of ¯1, denoted by ¯ , to
represent the orientation of principal mean stresses. Since ¯ is bi-di-
rectional, to avoid ambiguity, we consider the ¯ located within the
range of [0, ] (clockwise positive from North).

3. Euclidean mean of all local stresses and its equality with the
prescribed far-field stress

3.1. The synthetic fracture models

A total of 300 simulations (100 models× 3 far-field stress sce-
narios) have been conducted for the synthetic fracture rock mass
models. The distributions of local major principal stresses in one of the

ten realization sets are shown in Fig. 4. It seems that the distribution of
local stresses becomes more heterogeneous with the increase of the far-
field stress ratio /1 2 , the decrease of the power-law length exponent
a, and/or the increase of the mean fracture intensity ¯ . The Euclidean
mean of all stress data in each model is calculated and compared to the
prescribed far-field stress. The difference between the Euclidean mean
and the far-field stress in terms of major, minor principal stress mag-
nitude and orientation are respectively evaluated by | ¯ |/1 1 1 ,
| ¯ |/2 2 2 and |¯ |, and the magnitude and orientation differences
are presented in percentage and degree (°), respectively. The results for
the three far-field stress scenarios are given in Fig. 5 with each marker
representing the mean of the difference for the ten synthetic fracture
realizations corresponding to a specific combination of power-law
length exponent a and mean fracture intensity ¯ , and the associated
shaded area representing one standard deviation upper and lower with
respect to the mean. Note that the orientation difference is not com-
pared for the /1 2 =1 scenario.

As can be seen from Fig. 5, the magnitude difference between the
Euclidean mean of all simulated stresses and the prescribed far-field
stress for each synthetic fracture model is less than 5% (most of them
are less than 3%) and the orientation difference is less than 0.3°. Larger
magnitude and orientation difference generally occurs for the models
subjected to higher /1 2 . Slightly larger differences are seen for the
models with smaller mean fracture intensity ¯ (left panel of Fig. 5). The
magnitude difference is not very sensitive with respect to a (Fig. 5a–d),
while the orientation difference shows a decreasing trend with the in-
creasing a (Fig. 5e & f). The difference in terms of minor principal stress
magnitude (Fig. 5c & d) is generally larger than that of the major
principal stress magnitude (Fig. 5a & b) for /1 2 =2 and 3. The
variation (shown as±1 standard deviation, shaded area) of both the
magnitude and orientation difference of the ten synthetic fracture
realizations for each combination of a and ¯ mainly decreases with the
increasing a, and has larger values for larger /1 2 . Nevertheless, the
small difference between the Euclidean mean and the prescribed far-
field stress for the synthetic fracture models demonstrates that they can
be practically deemed as equivalent.

The difference between the Euclidean mean of all simulated stresses
and the prescribed far-field stress may be related to the overall stress
variability. To examine this postulation, we calculate the effective
variance of all the simulated stresses – a scalar-valued measure of
overall stress variability [51] – for each model. A detailed description of
the effective variance is given in Appendix B. The higher the effective
variance is, the more spread out a stress data group is with respect to
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their mean and thus larger overall stress variability. The effective var-
iances of the simulated stresses for each synthetic fracture model are
presented in Fig. 6. Similarly, the markers in Fig. 6 denote the mean
effective variance of the ten synthetic fracture realizations and the
shaded area represents one standard deviation upper and lower with
respect to the mean. As can be seen from Fig. 6, the higher the /1 2 is,
the larger the effective variance is. In response to the previous magni-
tude and orientation difference analysis, we can observe that for the
models subjected to higher /1 2 and thus with larger overall stress
variability, a larger difference between the Euclidean mean and far-
field stress generally occurs. This difference and larger overall stress
variability is caused by the re-activation of slipping between fracture
walls due to higher differential stresses induced by larger far-field stress
ratio, as demonstrated in [24]. In addition, the overall stress variability
generally increase with the decreasing a, and the models with larger ¯

usually have larger overall stress variability. This is mainly due to the
enhanced slipping accommodated along a large number of large frac-
tures that are preferentially oriented for frictional sliding for models
with smaller a and larger ¯ [24]. However, it seems the a and ¯ have no
apparent influence on the difference between the Euclidean mean and
far-field stress. Furthermore, the variation of the effective variance of
the ten synthetic fracture realizations for each combination of a and ¯
decreases with the increasing a, especially for /1 2 =3, which is
consistent with the variation change of the difference between the
Euclidean mean and far-field stress demonstrated earlier.

3.2. The natural fracture networks

We have conducted a total of 37 simulations on the Hornelen nat-
ural fracture network, i.e. one simulation for the far-field stress ratio
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Fig. 4. Distributions of local major principal stresses in one of the ten realization sets of the synthetic fracture rock mass models.
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/1 2 =1 and 18 simulations (with different far-field stress loading
angles) for /1 2 =2 and 3, respectively. The distribution of major
principal stress for some of the far-field stress orientation cases are
presented in Fig. 7. The local stresses change with the rotation of the
far-field stress, and we observe a higher degree of stress heterogeneity
for the models subjected to larger /1 2 .

The differences between the Euclidean mean of all local stress data
and the prescribed far-field stress for each model in terms of principal
stress magnitude and orientation are shown in Fig. 8 with respect to the
far-field stress orientation . Again, the Euclidean means of all local
stresses are very close to the far-field stresses, with the largest differ-
ences for the major, minor principal stress magnitude and orientation
being 1.0%, 2.7%, and 0.43°, respectively. Both the magnitude and

orientation differences fluctuate with the far-field stress orientation .
With the increasing /1 2 , the difference in terms of major principal
stress magnitude decreases (Fig. 8a), whereas the difference in terms of
minor principal stress magnitude generally shows an opposite trend
(Fig. 8b). Similar to the synthetic fracture models, the difference be-
tween the Euclidean mean and far-field stress is negligible for the si-
mulations subjected to /1 2 =1; for /1 2 =2 and 3 scenarios, the
difference in terms of minor principal stress magnitude (Fig. 8b) are
mainly larger than that of the major principal stress (Fig. 8a).

Likewise, the difference between the Euclidean mean and far-field
stress may also be related to the stress variability. We calculate the
effective variance of all simulated stresses in each Hornelen model and
the results are presented in Fig. 9 with respect to the far-field stress
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orientation . As can be seen from Fig. 9, the higher the /1 2 , the
larger the overall stress variability for each model. Also, the maximum
effective variance occurs around 10-20° and 100-110° for all the far-
field stress scenarios, which are respectively the bisection orientations
between fracture sets 40° and 150° (or, −30°) and between 85° and
150°. This is because of the anisotropic geometry of the Hornelen
fracture system such that significant stress variability caused by shear
displacements occurs when preferentially-oriented fractures are in
favor of intense slipping when subjected to far-field stresses in such
orientations [42]. Specifically, in case of = 10–20°, both the 40° and
150° (or, −30°) fracture sets have potential for higher slipping; in case
of = 100–110°, both the 85° and 150° fracture sets are active in shear.
This type of fracture slipping induced stress perturbation is intensified
when the fractures are driven by higher differential stresses associated

with larger far-field stress ratios. The large differences between the
Euclidean mean of all simulated stress data and the far-field stress for
each model, especially the magnitude difference (Fig. 8a & b), roughly
agrees with the far-field stress orientations that have large overall stress
variability, which suggests that the differences between the Euclidean
mean and far-field stress may be related to the stress variability.

The same far-field stress scenarios are employed on the Kilve and
Bristol fracture networks. The comparison between the Euclidean mean
and far-field stress for these two models is presented in Appendix C and
shows a mean magnitude difference less than 5% and mean orientation
difference less than 1.0°. The small difference between the Euclidean
mean of all local stress data and the prescribed far-field stress for the
natural fracture network models, again, validates their equality. This
further suggests that for a large amount of available local stress data,
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the Euclidean mean gives a good approximation of the far-field stress.
Additionally, this equality also supports our understanding of the
principles of solid mechanics since, essentially, the mean stress re-
presents the average effect of the far-field stress on the rock mass, and
in order to maintain model equilibrium, the mean stress should be
theoretically balancing the boundary loadings, i.e. equivalent to the far-
field stress. However, due to implementation difficulties and budget
limits, most rock engineering projects usually only conduct a limited
number of in situ stress measurements. Thus, in the next section, we will
examine whether the Euclidean mean can still give an acceptable esti-
mate of the far-field stress state for limited in situ stress measurements.

4. Effect of sample size of local stress measurements on far-field
stress estimation

To further explore the equality between the Euclidean mean and far-
field stress for conditions when only a limited number of local stress
data are available, for each of the synthetic and the Hornelen model, we
randomly sample a certain number of stress tensors (say, from 5 to 50
with a step size of 5) from all the simulated local stresses, and then
calculate their Euclidean mean and compare its principal stress mag-
nitudes and orientation with the corresponding prescribed far-field
stress. Here, we use 10% and 10° as the acceptable ranges for the
magnitude and orientation difference, respectively. In other words, if
the differences satisfy | ¯ |/ 10%1 1 1 , | ¯ |/ 10%2 2 2 and

°|¯ | 10 at the meantime, the Euclidean mean of the limited
number of local stresses are considered to be a practically acceptable
estimate of the far-field stress. For a specific sample size in each model,
the sampling procedure is repeated 10,000 times so that a stable ac-
ceptance ratio can be achieved, which also gives the probability of the
Euclidean mean of the specific number of local stresses as being a
reasonable estimate of the far-field stress according to the aforemen-
tioned acceptance criterion. Additionally, to check the influence of
stress variability on the sampling results, the acceptance ratio and the
effective variance are also compared.

4.1. The synthetic fracture models

The sampling results which give the probability of Euclidean mean
as being an acceptable estimate of the far-field stress for the synthetic
fracture models with mean fracture intensity ¯ =2.5m−1 are presented
in Fig. 10 for the three far-field stress ratios. Each marker denotes the
mean of the acceptance probabilities of the ten synthetic fracture rea-
lizations corresponding to a specific combination of a and ¯ , and the
associated shaded area represents one standard deviation above and
below the mean. It can be seen that, as the sample size increases, the
probability of obtaining acceptable estimate of the far-field stress in-
creases. However, when the sample size is beyond a certain value,
further increase of the sample size only has a slight effect on the in-
crease of acceptance probability. For example, for the models subjected
to /1 2 =1, the probability only witnesses a less than 10% increase
when the sample size increases from 25 to 50 (Fig. 10a & d). With the
increase of /1 2 , the probability shows an overall decreasing trend.
Only a small probability change has been observed with respect to a,
especially for /1 2 =1 and 2, and the variability of the probability for
each group of the ten synthetic fracture realizations (shaded area) is
mainly less than 5%.

The probability of obtaining acceptable estimates of far-field stress
has a close relationship with the overall stress variability characterized
by the effective variance (Fig. 6a). A comparison between Fig. 10 and
Fig. 6a suggests that larger acceptance probability generally occurs in
the models with smaller effective variance. For example, the higher the
ratio /1 2 is, the larger the effective variance is and thus a smaller
acceptance probability. Specifically, for the models subjected to

/1 2 =1, the effective variances are very small; as a result, relatively
large probabilities can be seen in Fig. 10a & d. For /1 2 =2, the ef-
fective variance first increases and then decreases with respect to a,
with a maximum at a=2.5. This is probably because the stress varia-
bility is governed by two types of perturbations: slipping along fractures
and stress concentration at fracture tips. When a is small, the system
accommodates significant shearing along large fractures. When a in-
creases, the effect of slipping-induced stress perturbation is more sup-
pressed and the stress concentration at fracture tips becomes dominant
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due to the constraint of matrix against fracture shearing. The compro-
mise of the two effects eventually leads to the maximum value at
a=2.5 when /1 2 =2. Whereas for /1 2 =3, because of the high
differential stress, the slipping-induced stress perturbation is much
more dominated. The acceptance probability shown in Fig. 10b is
clearly in response to this trend, i.e. first decreases and then increases.
The models subjected to /1 2 =3 have a decreasing effective var-
iance with respect to a (Fig. 6a), and thus the probability shows an
increasing trend (Fig. 10c). Furthermore, for the models with small a
and subjected to /1 2 =3, the effective variance has a large varia-
bility (shaded area in Fig. 6a), which is manifested by the large varia-
tion of probability shown on the left-hand side of Fig. 10c.

The above trends for the acceptance probability change and the
relationships between the acceptance probability and effective variance
can also be observed for the synthetic fracture models with mean
fracture intensity ¯ =5.0m−1, as presented in Fig. 6b for the effective
variances and in Fig. 11 for the acceptance probabilities. However, the
effective variance of the models with ¯ =5.0m−1 (Fig. 6b) is generally
larger than the ones with ¯ =2.5m−1 (Fig. 6a), especially for the si-
mulations under /1 2 =2 and 3. Correspondingly, we can see a
smaller acceptance probability (i.e. lower positions of the lines) in
Fig. 11 than that in Fig. 10. Both Fig. 10 and Fig. 11 reveal that the
larger the overall stress variability is (i.e. larger effective variance), the

smaller the probability is for recovering far-field stress information
based on a limited number of local stress measurements.

4.2. The Hornelen models

The sampling results for the Hornelen models with respect to the
different far-field stress orientation are presented in Fig. 12. Again,
the probability of obtaining an acceptable estimate of far-field stress
increases with the increase of sample size, and the acceptance prob-
ability exhibits an overall decreasing trend when /1 2 increases. For
each sample size, the acceptance probability varies with the far-field
stress orientation and displays a similar changing trend for the models
subjected to both /1 2 =2 and 3 (Fig. 12b & c), although the latter
shows more distinct probability change.

The change of acceptance probability with respect to the far-field
stress orientation has an opposite trend with the change of effective
variance, which is similar to that of the previous synthetic fracture
models. For example, for the models subjected to /1 2 =2, the local
maxima and minima of effective variance occur at = 20° and 100°,
and 60° and 140°, respectively (Fig. 9), and accordingly, the local
minima and maxima of the acceptance probability can be found at
= 20° and 100°, and 60° and 140°, respectively (Fig. 12b). Similarly,

the local minima and maxima of acceptance probability for the models
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Fig. 10. The probability of obtaining acceptable far-field stress estimate based on the Euclidean mean of a limited number of local stresses for the synthetic fracture
models with ¯ =2.5m−1. (a) /1 2 =1, (b) /1 2 =2, (c) /1 2 =3, and (d) acceptance probability with respect to sample size for the models with a=2.5 and
subjected to the three far-field stress ratios. Note that (d) is a cross-section of (a–c) to facilitate comparison. Each marker represents the mean of the acceptance
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subjected to /1 2 =3 are seen at = 10° and 100°, and 60° and 140°,
respectively (Fig. 12c), and as shown in Fig. 9, the local maxima and
minima of the effective variance are observed at the same places. Ad-
ditionally, for /1 2 =3, the large changing range of effective variance
with respect to the far-field stress orientation (Fig. 9) explains the
reason why the models under this far-field stress ratio show more dis-
tinct acceptance probability changes (Fig. 12c).

Both the synthetic and Hornelen models suggest that the effective
variance, as a measure of the overall stress variability in fractured rock
masses, seems to be a useful indicator of the probability of obtaining
acceptable far-field stress estimate based on limited local measure-
ments: the larger the effective variance is, the more stress measure-
ments are needed in order to achieve a reliable far-field stress estimate.
However, the number of stress measurements needed to obtain a
practically acceptable far-field stress varies case by case. Taking the
Hornelen model sampling results shown in Fig. 12 for example, if one
wants to reach an 80% acceptability for far-field stress estimation, more
than 20, 30 and 50 stress measurements are needed for the models
subjected to /1 2 =1, 2 and 3, respectively. While based on the
synthetic fracture model results presented in Fig. 11, if one wants to
reach the same acceptability, more than 15 and 40 stress measurements
are required for /1 2 =1 and 2, respectively; however, more than 50
stress measurements can only guarantee an acceptability of

approximately 70% for /1 2 =3.
Therefore, an important finding of the above analyses is that a

practically acceptable far-field stress estimate often requires a large
number of stress measurements. For the small number of stress mea-
surements often conducted in rock engineering projects (generally less
than 10) [52], taking the sampling results for synthetic and Hornelen
models using the intermediate far-field stress ratio /1 2 =2 for ex-
ample, the probabilities of obtaining acceptable far-field stress estimate
are around 40% and 50%, respectively. These small acceptance prob-
ability values suggest that simply using the average of very small
number of stress measurements as input for further rock structure de-
sign and numerical analysis may have the potential to yield sig-
nificantly erroneous results.

5. Conclusions and discussion

In this study, we have investigated the relationship between the
Euclidean mean of local stresses and the far-field stress using the FDEM
simulated stress fields of both synthetic fracture network following
power-law length scaling and a natural fracture network extracted from
real outcrops. We have used three sets of prescribed far-field stresses,
and a total of 300 simulations and 111 simulations have been respec-
tively conducted based on the synthetic and natural fracture models.
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Fig. 11. The probability of obtaining acceptable far-field stress estimate based on the Euclidean mean of a limited number of local stresses for the synthetic fracture
models with ¯ =5.0m−1. (a) /1 2 =1, (b) /1 2 =2, (c) /1 2 =3, and (d) acceptance probability with respect to sample size for the models with a=2.5 and
subjected to the three far-field stress ratios. Note that (d) is a cross-section of (a–c) to facilitate comparison. Each marker represents the mean of the acceptance
probabilities of the ten synthetic fracture realizations corresponding to a specific combination of a and ¯ , and the corresponding shaded area represents one standard
deviation upper and lower with respect to the mean. The vertical arrow in (a–c) indicates the increasing sample size.
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Upon the simulation reaches equilibrium, the Euclidean means of all
simulated stress data and randomly sampled stress data have been
calculated and compared with the prescribed far-field stress to examine
whether the Euclidean mean of local stresses can give an acceptable
estimate of the far-field stress.

The calculations show that when considering all the stress data in
each model, for the synthetic fracture models, the magnitude difference
between the Euclidean mean and the prescribed far-field stress is less
than 5% and the orientation difference is smaller than 0.3°. Larger
differences are seen for the models subjected to higher far-field stress
ratio and thus with larger overall stress variability measured by the
effective variance. For the Hornelen natural fracture models, the largest
differences for the major, minor principal stress magnitude and or-
ientation are 1.0%, 2.7%, and 0.43°, respectively. Both the magnitude
and orientation differences fluctuate with the far-field stress orienta-
tion, and larger difference generally occurs for the model having higher
overall stress variability. The insignificant difference between the
Euclidean mean of all local stress data and the prescribed far-field stress
for both the synthetic and natural fracture models demonstrates the
equality between the two quantities, and this provides evidence that for
a large amount of available local stress data, the Euclidean mean is a
very close approximation of the far-field stress.

The sampling results demonstrate that for both the synthetic and
natural fracture models the probability of obtaining an acceptable es-
timate of the far-field stress is increasing with the increasing sample
size. Additionally, with the increasing /1 2 , the probability has an
overall decreasing trend. This acceptance probability has a close re-
lationship with the stress variability, i.e. the larger the stress variability
is, the smaller the probability is for obtaining an acceptable far-field
stress for a specific number of local stress measurements, and thus the
more stress measurements are needed in practice.

Of great importance is our finding that a practically reliable far-field
stress estimate often requires a large number of stress measurements.
For the small number of stress measurements often conducted in rock
engineering projects, simply using their average as input far-field stress
for further rock structure design and numerical analysis may yield
significantly misleading results. In order for robust stress-related ana-
lysis, we suggest combining the numerical simulations and local stress
measurements to reach more detailed stress fields through careful ca-
librations, such as using the recently proposed geomechanical-numer-
ical model [53–55]. Nevertheless, calculating the Euclidean mean of
local stress measurements is a correct direction for achieving reliable
far-field stress.
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Fig. 12. The probability of obtaining acceptable far-field stress estimate based on the Euclidean mean of a limited number of local stresses for the Hornelen models.
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Appendix A. List of main symbols

a power-law length exponent
l fracture length
D fractal dimension
n(l,L) probability density function of fracture length

density term
¯ mean fracture intensity
Si ith stress tensor, i=1, 2, … n
S̄ euclidean mean stress tensor
¯1 major principal stress of the Euclidean mean stress

tensor
1 major far-field stress

¯2 minor principal stress of the Euclidean mean stress
tensor

2 minor far-field stress
orientation of 1

¯ orientation of ¯1

Appendix B. Effective variance – scalar-valued measure of stress variability

Stress in rock often displays significant variability, and it is important that the overall variability of stress can be characterized in a quantitative
manner [23,24,51,56]. Dispersion, which denotes how scatter or spread out a data group is, is an effective parameter for such characterization. Since
it has been demonstrated that the variability of stress tensors can be adequately represented by the variability of its distinct tensor components in a
multivariate statistics manner [57], we have proposed using the widely-used concept of “effective variance” in multivariate statistics for group
dispersion measure in [58] as a scalar-valued measure of the overall stress variability [23,24,51].

The effective variance of stress tensors can be calculated based on the covariance matrix of their distinct tensor components referred to a common
Cartesian coordinate system. For a stress tensor denoted in Eq. (4), its distinct tensor components are

= =s Svech( ) [ ] .x yx y T
d (B.1)

Here, the subscript “d” denotes “distinct”, [ · ]T represents the matrix transpose, and vech(·) is the half–vectorization function which stacks only the
lower triangular (i.e. on and below the diagonal) columns of a tensor into column vector containing only its distinct components [[59], p. 246]. For
the stress vector sd, its covariance matrix is

= =
=n

s s s̄ s s̄cov( ) 1 ( )·( ) ,
i

n
T

d
1

d d d di i
(B.2)

where s̄d denotes the mean vector and can be calculated by

=
=n

s̄ s1 .
i

n

d
1

di
(B.3)

Based on the covariance matrix given in Eq. (B.2), the effective variance is defined as

=
+

V | | ,
1
2

e|d
p p( 1)

(B.4)

where | · | denotes the matrix determinant and p =p( 2) is the dimension of the stress tensor. Similar to the variance and standard deviation of scalar
data, the smaller the effective variance, the more uniform the stress data would be. The effective variance has proven its effectiveness for stress
variability characterization in many recent work [23,24,56,60].

Appendix C. Equality between Euclidean mean and far-field stress examined based on two additional natural fracture networks

In terms of natural fracture network, in addition to the Hornelen model, we have employed two additional models – the Kilve and Bristol fracture
networks (Fig. C1) – to further validate the equality between the Euclidean mean of all simulated stress data and the prescribed far-field stress. The
Kilve and Bristol model are obtained based on the outcrops of limestone beds located on the southern margin of the Bristol Channel Basin, UK
[61,62], and their sizes are of 6× 6m2 and 8×8m2, respectively. The material properties of the limestone rocks are assumed as follows: the bulk
density is 2,700 kg/m3, the Young’s modulus is 30.0 GPa, the Poisson’s ratio is 0.27, the internal friction coefficient is 1.0, the tensile strength is
20.0MPa, the cohesive strength is 40.0MPa, the joint friction coefficient is 0.85, and the mode I and II energy release rates are 158.4 and 198.0 J/
m2, respectively. Similar to the Hornelen model, three far-field stress scenarios are explored: (i) 1 =5.0MPa, 2 =5.0MPa, (ii) 1 =10.0MPa,

2 =5.0MPa, and (iii) 1 =15.0MPa, 2 =5.0MPa, and a series of simulations are conducted by rotating the far-field stresses clockwise for 170°
with a step size of 10°, as demonstrated in Fig. 3b. Therefore, a total of 37 simulations are conducted for each fracture network.

When the models reach equilibrium, the differences between the Euclidean mean of all simulated stress data and the prescribed far-field stress for
each model are compared using the approaches demonstrated in Section 3. Then the differences between the Euclidean mean and far-field stress for
the 18 rotation scenarios under each prescribed far-field stress are averaged and the results are collected in Fig. C2 with their standard deviations. As
can be seen that for the Kilve and Bristol models, the average differences between the Euclidean mean and far-field stress in terms of major, minor
principal stress magnitude and orientation are less than 4.0%, 5%, and 1.0°, respectively. Although these differences are slightly higher than the ones
for Hornelen models (Section 3.2), they validate the equality between the Euclidean mean and far-field stress in natural fracture networks. This again
suggests that for a large amount of available local stress data, the Euclidean mean gives a good approximation of the far-field stress.
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