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A B S T R A C T

We conduct numerical simulations to investigate the variability of local stresses in heterogeneous fractured rocks
subjected to different far-field stress conditions. A realistic fracture network is constructed based on a real
outcrop mapped at the Hornelen Basin in Norway. The heterogeneity of the rock material is modelled using a
Weibull distribution of Young's modulus characterised by a homogeneity index m. As m decreases, the rock
material becomes less homogeneous. The distribution of local stresses in the fractured rock under far-field stress
loading is derived from a hybrid finite-discrete element model, and the stress variability is further analysed using
a tensor-based formalism that faithfully honours the tensorial nature of stress data. The local stress perturbation
is quantified using the Euclidean distance of each local stress tensor to the mean stress tensor, and the overall
stress dispersion is measured using the effective variance of the entire stress tensor field. We show that the local
stress field is significantly perturbed when the far-field stresses are associated with a high stress ratio and im-
posed at a critical direction in favour of intense sliding along preferentially-oriented fractures. The strong cor-
relation between fracture sliding and local stress variability are further revealed from a scanline sampling
analysis through the domain. Furthermore, larger perturbation of local stresses can be induced as the in-
homogeneity of the rock materials increases (i.e. m decreases). Whether the stress field is dominated by fractures
or matrix depends on the far-field stress state, material inhomogeneity, and fracture properties. If the rock
material is highly heterogeneous, stress variability is controlled by the matrix when the far-field stress ratio is
low; however, the stress distribution becomes more affected by fractures as the stress ratio increases. If the rock
material is more homogeneous, the system tends to be more dominated by fractures even under a relatively low
stress ratio.

1. Introduction

The state of in-situ stress in fractured rocks is governed by tectonic
stresses and local perturbations.1 The tectonic (or far-field) stresses
related to plate-driving forces are typically uniform over the litho-
spheric scale,2 while local perturbations induced by topography, dis-
continuity, material inhomogeneity, and anisotropy as well as en-
gineering processes have much smaller wavelengths.3 The
superimposition of the two categories of forces leads to spatially vari-
able in-situ stress state. Many studies have been conducted to in-
vestigate the effects of discontinuities (e.g. faults and joints) on per-
turbing the regionally uniform tectonic stress field.4–9 However, much
less efforts have been devoted to understanding the impact of material
inhomogeneity (e.g. rock modulus) on stress variability in fractured
rocks. Furthermore, the potentially interactive roles of different con-
trolling factors (e.g. far-field stress state, fracture network, and material
inhomogeneity) in developing local stress variability need to be better

understood. Thus, in this paper, we explore these problems in detail by
employing the state-of-the-art numerical simulation combined with a
novel tensor-based stress analysis method.

In the past decades, different numerical methods have been devel-
oped to simulate the geomechanical behaviour of rock masses embedded
with pre-existing fractures, such as the finite difference method,10,11 the
discrete element method,12 the bonded-particle method,13 and the hy-
brid finite-discrete element method (FEMDEM).14,15 Many important and
realistic geomechanical characteristics of fractured rocks under far-field
stresses including rock deformation, block rotation, fracture displace-
ment and crack propagation were well captured. Furthermore, many
numerical techniques have also been used to model the deformation and
strength behaviour of heterogeneous intact rocks, such as the finite ele-
ment method,16–18 the smoothed particle hydrodynamics method,19 the
local degradation method,20,21 and the discrete element method.22–24

The inhomogeneous nature of rock materials was considered either ex-
plicitly using a Voronoi-based microstructural representation24 or
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implicitly as the variation of material properties following a Weibull
distribution.25 Here, we integrate the Weibull distribution model into the
FEMDEM approach to simulate the complex geomechanical behaviour of
heterogeneous fractured rocks, including the stress/strain of hetero-
geneous matrix, the mechanical interaction of discrete blocks, the non-
linear deformation of pre-existing fractures, and the propagation of new
cracks driven by stress concentrations. By further employing the recently
developed tensor-based formalism for stress variability characterisa-
tion,9,26 we aim to explore how far-field stress, fracture distribution, and
material inhomogeneity act interactively to engender local stress per-
turbation in geological media, and to gain insights into the physical
mechanisms that govern stress variability.

In this study, we focus on the two-dimensional (2D) scenario, which
is applicable for a sedimentary formation whose lateral characteristic
scale is much larger than its transversal one. We assume that the in-situ
stress field in the fractured rock develops entirely based on the imposed
contemporary tectonic stresses, whereas the possible residual stress
effect is not considered. The rest of the paper is organised as follows. In
Section 2, a natural fracture network model based on a real outcrop is
constructed, and the numerical method for geomechanical modelling of
heterogeneous fractured rocks is described. In Section 3, the results of
stress calculation and analysis are shown. Finally, a discussion is given
and conclusions are drawn.

2. Methodology

The fracture network used in this research is based on a
18m×18m outcrop map (Fig. 1a) of a Devonian age sandstone lo-
cated at the Hornelen Basin, western Norway.27 This fracture pattern
consists of more than 2000 joints, which are mostly perpendicular to
the bedding. Three major joint sets are identifiable with their mean set
orientations as 5°, 50° and 120° (Fig. 1b-d), with respect to the x-axis of
the selected local coordinate system (Fig. 1a). It can be seen that the
120° set has the largest number of fractures, and the 5° set has the
longest average fracture length. The formation of this fracture system

was interpreted as the result of the stress release on uplift and erosion.27

The geomechanical behaviour of the fractured sandstone under far-
field stresses is modelled using a hybrid finite-discrete element method
(FEMDEM).28,29 The FEMDEM model represents a 2D fractured rock
using a fully discontinuous mesh of three-node triangular finite ele-
ments, which are linked by four-node joint elements (Fig. 2). There are
two types of joint elements: unbroken joint elements inside the matrix
and broken joint elements along fractures. The deformation of the bulk
material is captured by the linear-elastic constant-strain triangular fi-
nite elements with the impenetrability enforced by a penalty function
and the continuity constrained by bonding forces of unbroken joint
elements. The interaction of discrete matrix bodies is calculated based
on the penetration of finite elements via broken joint elements. The
joint elements (either broken or unbroken) are created and embedded
between the edges of triangular element pairs before the numerical
simulation and no remeshing is performed during later computation.
The FEMDEM model also provides a natural solution to mimicking
elasto-plastic fracturing processes in brittle/quasi-brittle materials
based on fracture mechanics principles, so that unrealistic high stress
concentrations at fracture tips encountered in the conventional finite
element analysis can be eliminated.

In the FEMDEM model, the motion of finite elements is governed by
the forces acting on the elemental nodes28:

+ =Mx f f ,int ext (1)

where M is the lumped nodal mass matrix, x is the vector of nodal
displacements, fint are the internal nodal forces induced by the de-
formation of triangular elements, fext are the external nodal forces in-
cluding external loads fl contributed by boundary conditions and body
forces, cohesive bonding forces fb caused by the deformation of un-
broken joint elements, and contact forces fc generated by the contact
interaction via broken joint elements. The equations of motion are
solved by an explicit time integration scheme based on the forward
Euler method. The FEMDEM model has been verified9 against the
Westergaard analytical solutions30 for computing the stress distribution

Fig. 1. (a) A 18m×18m outcrop map of the natural fracture system in the Devonian sandstone at Hornelen Basin, western Norway.27 Rose diagrams illustrating the
directional distribution of (b) fracture frequency, (c) cumulative length, and (d) mean length.
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Fig. 2. Representation of a 2D fractured rock using an unstructured, fully-discontinuous mesh of three-node triangular finite elements linked by four-node joint
elements.

Fig. 3. Variability of Young's modulus in the sandstone formation characterised by the Weibull distribution with different values of shape parameter m (or material
homogeneity index).

Fig. 4. Application of the far-field stresses (a) orthogonally or (b) obliquely to the problem domain.
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around a single fracture with a unit half-length and a zero friction
coefficient in rock under isotropic remote tension or pure remote shear
of unit magnitude.

The material properties of the fractured sandstone are assumed as
follows31,32: the bulk density is 2500 kg/m3, the mean Young's modulus
is 20.0 GPa, the Poisson's ratio is 0.25, the internal friction coefficient is
1.0, the tensile strength is 20.0MPa, the internal cohesive strength is
40.0MPa, and the mode I and II energy release rates are 396.1 and
495.1 J/m2, respectively. The shear strength of fractures obeys the
Coulomb criterion such that frictional sliding occurs if the shear stress

exceeds the product of the effective normal stress and an assumed
friction coefficient of 0.85.32 The complex variation of friction coeffi-
cient during fracture shearing33 is not considered. The variability of
Young's modulus of the sandstone is characterised using the Weibull
distribution (Fig. 3), and the probability density function is given
as16,34:

=f E m
E

E
E

E
E

( ) ¯ ¯ exp ¯ ,
m m1

(2)

Fig. 5. Distributions of (a) shear displacement δ and (b) local stress perturbation d S S( , ¯) in the heterogeneous fractured rock under different far-field stress ratio
conditions.
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where E is the elemental Young's modulus, Ē is the mean Young's
modulus, m is the shape parameter or material homogeneity index.
Here, the Weibull distribution is adopted for the purpose of exploring
generic scenarios with different degrees of material heterogeneity. The
smaller m is, the more heterogeneous the rock is. We represent the
spatial variability of E in an element-wise way16–18 such that E re-
presents the bulk modulus of the rock in each elemental area. If the
total number of stochastic E values (i.e. corresponding to the total
number of finite elements) is sufficiently large, the potential effect of
random number generation may be statistically minor. We consider
four different material inhomogeneity scenarios: m=1.25, 2.5, 5.0,
and 10.0, covering the conditions from highly heterogeneous to very
homogeneous (Fig. 3). It is worth mentioning that other material
properties such as Poisson's ratio, tensile strength and cohesion may
also be variable in actual rocks, but only the variation of Young’
modulus is considered here due to its much more dominant role in
redistributing stresses in rock compared to these other properties.35

The heterogeneous sandstone containing distributed fractures is
discretised using an unstructured mesh with an average element size of
0.075m (>100,000 elements in total). This element size is carefully
chosen through a series of mesh sensitivity analyses by considering the
accuracy of results and the computational expense (see Appendix B).
We impose two sets of far-field stress loading conditions. First, effective
far-field principal stresses are loaded orthogonally to the problem

domain (Fig. 4a), and we consider three different stress ratios: (i) Sxx
=5.0MPa, Syy =5.0MPa, (ii) Sxx =10.0MPa, Syy =5.0MPa, and (iii)
Sxx =15.0MPa, Syy =5.0MPa, corresponding to S S/xx yy =1.0, 2.0,
and 3.0, respectively. Second, effective far-field principal stresses Smax
=15.0MPa, Smin =5.0MPa are loaded from different angles (θ=0°,
10°, 20°, …, 170°) to the fractured rock, as shown in Fig. 4b.

We extract the data of stress distribution from the geomechanical
simulation in which all components of the second-rank Cauchy stress
tensor at each element are derived. Then we analyse the stress data
using the recently developed tensor-based statistical formulation that
faithfully honours the tensorial nature of stress26,36: We characterise the
local stress perturbation using the Euclidean distance between each
local stress tensor and far-field stress tensor, d S S( , ¯). We evaluate the
overall stress variability in the heterogeneous fractured rocks using the
effective variance of the entire stress field, Ve(S). The tensor-based
stress analysis method and the mathematical definitions of d S S( , ¯) and
Ve(S) are given in Appendix A. A detailed justification of the tensor-
based stress variability characterisation method can be found in the
previous work.37,38

3. Results

Fig. 5 shows the distributions of fracture shear displacement δ and
local stress perturbation d S S( , ¯) in the fractured rock associated with

Fig. 6. Probability density functions (PDFs) of (a) shear displacement δ and (b) local stress perturbation d S S( , ¯) in the heterogeneous fractured rock under different
far-field stress ratio conditions.
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different degrees of material inhomogeneity and under different far-
field stress ratio conditions. The probability density functions (PDFs) of
δ and d S S( , ¯) of all these cases are further given in Fig. 6 (note that the
PDF in Fig. 6b is based on a logarithmic x-axis but the total area of each

histogram equals to unity). Under the isotropic far-field stress loading,
there is almost no shearing in the fracture network for all m cases
(Figs. 5a and 6a). However, an increased amount of stress perturbation
appears in the system as the rock becomes more heterogeneous (i.e. m

Fig. 7. The profiles of fracture shear displacement δ (in black) and local stress perturbation d S S( , ¯) (in blue) along a 1D scanline (x=9m, 0≤ y≤18m) across the
heterogeneous fractured rock under different far-field stress ratio conditions. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article).
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decreases) (Figs. 5b and 6b). As the far-field stress ratio S S/xx yy in-
creases, significant shear displacement occurs (Figs. 5a and 6a) along
some fractures that have good connectivity and are preferentially or-
iented for frictional sliding (Fig. 5a). Furthermore, for high S S/xx yy,
considerable stress fluctuations emerge in the fractured rock, the degree
of which is further intensified as m decreases (Figs. 5b and 6b). It is
manifest that when S S/xx yy =3, the stress perturbation in the case of
m=1.0 is much larger than those of other m cases.

We sample a 1D scanline (x=9m, 0≤ y≤18m) across the do-
main and extract the shear displacement of fractures that intersect the
scanline and local stress perturbation in the rock along this line. As
shown in Fig. 7, under the isotropic far-field stress, there is no shearing
along fractures, but certain stress perturbation still exists in the very
heterogeneous rock (e.g. m=1.25). As the far-field stress ratio in-
creases, some of the fractures are reactivated for shearing and the stress
field becomes strongly perturbed, which is further enhanced if the rock
is more heterogeneous. It seems that the peaks of the stress perturbation
profile correspond quite well to the locations of sheared fractures, while
some minor mismatch is due to the effects of nearby fractures that are
not sampled by the scanline. Other scanlines at different positions and
with different orientations show similar results, but not presented here
for the sake of brevity.

We evaluate the bulk shear behaviour of the fracture system using
the total strain from frictional sliding ε, which is defined as the sum of
the geometric moments (i.e. product of the average shear displacement
and fracture length) of all fractures divided by the area of the domain.39

We also characterise the overall stress variability using the effective
variance of the entire stress tensor field Ve(S). It can be seen that ε
increases significantly as S S/xx yy increases, the degree of which is fur-
ther enhanced by a decreased m, especially when S S/xx yy =3 (Fig. 8a).
The system also exhibits larger stress dispersion with increasing S S/xx yy
and decreasing m (Fig. 8b). This is mainly due to the intensified fracture
shearing driven by high differential stresses and non-uniform stress
redistribution induced by material inhomogeneity. The latter factor
seems to prevail over the former one in the highly heterogeneous rock,
i.e. m =1.25.

Fig. 9 shows the simulation results of shear displacement δ and local
stress perturbation d S S( , ¯) in the fractured rock under far-field stresses
of Smax =15.0MPa and Smin =5.0MPa that are imposed at different
angles θ to the system (note that only the representative cases of
θ=10°, 40° and 90° are shown). The PDFs of δ and d S S( , ¯) of these
selected θ cases are given in Fig. 10. The scanline sampling results are

shown in Fig. 11. The total strain due to fracture shearing ε and the
effective variance of the stress field Ve(S) for all cases of θ=0–170° are
presented in Fig. 12.

It can be seen that the shear behaviour of fractures is strongly
controlled by the orientation of far-field stresses relative to the or-
ientation of fracture sets. Theoretically, the shear stress on a pre-ex-
isting fracture reaches its maximal when the angle between the Smax
direction and the fracture plane is 45°-φ/2,40 which is about 25° here
given that the joint friction angle φ≈40° (i.e. friction coefficient of
0.85). Thus, as shown in Fig. 9, in the case of θ=10°, the 50° fracture
set exhibits higher shear displacement, while the other two sets (i.e. the
5° and 80° sets) are quite suppressed for shearing; in the case of θ=40°,
the 5° fracture set is active in shear, while the other sets are less re-
activated; in the case of θ=90°, both the 50° and 120° sets are at a
favourable orientation for sliding. Figs. 10a and 11 further reveal that
the cases of θ=10° and 90° accommodate more shearing in the frac-
ture system than the case of θ=40°. Thus, the total strain ε varies
significantly with the orientation of far-field stresses, and reaches its
maxima when θ≈90° and 170°, and minima when θ≈40° and 120°
(Fig. 12a). Furthermore, a decreased m tends to enhance the shearing of
fractures (Figs. 9a, 10a, and 12a), especially when the far-field stresses
are critically oriented to reactivate more than one set of fractures (e.g.
when θ=90°, Fig. 12a).

The far-field stress orientation also has a significant influence on the
local and global stress variability in the fractured rock. The stress field
is highly perturbed when θ=90°, moderately perturbed when θ=10°,
and much less perturbed when θ=40° (Figs. 9b and 10b). It can be
seen that the most perturbed region in the fractured rock is at the vi-
cinity of fractures that are oriented in favour of shearing in each θ case
(Fig. 9b), implying the important impact of fracture sliding and induced
mechanical interactions on stress distribution. The relationship be-
tween fracture shearing and local stress perturbation can also be clearly
seen from the displacement and stress profiles sampled from the scan-
line (Fig. 11). Additionally, an increased material inhomogeneity (i.e.
decrease m) leads to pronounced local perturbations in the stress pat-
tern in different θ cases (Figs. 9b and 10b). The effective variance of the
stress field is also very sensitive to the far-field stress orientation, and
exhibit three maxima and two minima (Fig. 12b), which is consistent
with the variation of ε (Fig. 12a) and further confirms the correlation
between fracture sliding and stress variability. Furthermore, an in-
creased material inhomogeneity tends to considerably enlarge the
overall stress dispersion (Fig. 12b).

Fig. 8. (a) The total strain from frictional sliding ε and (b) effective variance of the stress field Ve(S) in the heterogeneous fractured rock under different far-field
stress ratio conditions.
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4. Discussion

The important influence of natural fractures on the stress distribu-
tion in geological media has been well recognised.3,35 Extensive field
measurements have revealed that significant stress jump and reor-
ientation can occur in the vicinity of geological structures.4,8,41–44

Previous numerical studies have also suggested that strong stress fluc-
tuations can be created in the regions near active discontinuities

undergoing shear.7,11,14,45 The observed correlation between the
shearing along pre-existing fractures and the variability of local stresses
in our work shows good consistency with these earlier studies. Fur-
thermore, such a correlation is found to be strongly dependent on the
far-field stress ratio and orientation. It is worth emphasising that we
also elucidate the effect of inhomogeneous rock modulus on stress or-
ganisation, which may play a dominant role in highly heterogeneous
rocks as a result of significant stress redistribution, i.e. the stiffer parts

Fig. 9. Distributions of (a) shear displacement δ and (b) local stress perturbation d S S( , ¯) in the heterogeneous fractured rock under the far-field stress field of Smax
=15.0MPa and Smin =5.0MPa applied at different angles of θ=10°, 40° and 90°.
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of the rock sustain higher stresses than softer parts.35 We schematically
show in Fig. 13 that the stress variability in fractured rocks may be
dominated by fractures or heterogeneous rocks (or both), depending on
the conditions of material inhomogeneity, far-field stress ratio and
fracture network. If the rock material is highly heterogeneous (i.e. m is
small), stress variability is more dominated by the matrix when the far-
field stress ratio is low; however, when fractures are reactivated for
shearing driven by a high far-field stress ratio, the stress field becomes
more affected by fractures. If the rock material is quite homogeneous
(i.e. m is large), the system tends to be more dominated by fractures
even under a relatively low far-field stress ratio. In between the matrix-
dominated and fracture-dominated regimes, there is a transition regime
where both factors are important. With an increase of the fracture
network density and/or a decrease of the friction coefficient of frac-
tures, the transition regime is expected to be more approaching to the
bottom left of the diagram. This is because fractures tend to accom-
modate more slipping (as demonstrated from our previous work9) and
thus dominate stress distribution.

Another finding of this paper is the interactive roles of far-field
stress state, fracture distribution and material inhomogeneity in the
development of variable local stresses in fractured rocks. It is commonly
known that when the far-field stresses are loaded with a high stress

ratio and at a critical orientation to the fracture system, some of the
fractures are highly stimulated for shearing, which leads to stress
concentration at their tips/intersections and stress reorientation in their
proximity. In this research, we further observe that the inhomogeneous
nature of rock modulus can result in more unevenly loaded normal/
shear forces along these fractures, while the sliding of fractures may
reinforce the effect of material inhomogeneity by generating more
variable boundary stresses around matrix blocks. This may explain the
variation of total strain and stress dispersion in the anisotropic fracture
system with the rotation of far-field stresses and the homogeneity
condition of rock materials, as observed in Fig. 12.

5. Conclusions

To conclude, we studied the variability of stress field in hetero-
geneous fractured rocks under different far-field stress conditions. A
fracture network based on a sandstone outcrop was used and the in-
homogeneous nature of rock was modelled according to the Weibull
distribution of its Young's modulus. Geomechanical modelling based on
a hybrid finite-discrete element method was conducted to calculate the
local stress field in the fractured rock under far-field stresses loaded at
different stress ratios and orientations. The derived stress data were

Fig. 10. Probability density functions (PDFs) of (a) shear displacement δ and (b) local stress perturbation d S S( , ¯) in the heterogenous fractured rock under the far-
field stress field of Smax =15.0MPa and Smin =5.0MPa applied at different angles of θ=10°, 40° and 90°.
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further processed using a novel tensor-based approach that fully hon-
ours the tensorial nature of stresses. The local stress perturbation was
quantified using the Euclidean distance of the local stress tensor to the
mean stress tensor, and the overall dispersion was evaluated using the
effective variance of the entire stress field. It was found that local stress
field is significantly perturbed when the far-field stresses are imposed
with a high stress ratio and at a critical orientation in favour of intense
shearing along fracture walls. Furthermore, the local stress field

exhibits stronger disturbance as the rock becomes more heterogeneous.
This paper provided valuable insights into the interactive roles of far-
field stress state, fracture network and material inhomogeneity in
causing stress variability in geological media, and whether the stress
field is dominated by fractures or matrix depends on these three factors.
The results may have important implications for understanding the
stress state of the Earth's crust for geoengineering applications.

Fig. 11. The distributions of fracture shear displacement δ (in black) and local stress perturbation d S S( , ¯) (in blue) along a 1D sampling line (x= 9m, 0≤ y≤18m)
through the heterogeneous fractured rock. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article).
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Appendix A. Tensor-based stress variability characterisation

In a 2D stress tensor field S, which consists of n stress measurements, the ith stress tensor Si is written as:

=
S S

SS symmetric .i
i i

i

xx, xy,

yy, (A.1)

The mean tensor of the entire stress field is calculated as36:

= =
=

= =

=n n
S S

S
S S¯ 1 1

symmetric
.

i

n

i
i
n

i i
n

i

i
n

i1

1 xx, 1 xy,

1 yy, (A.2)

Since the mean stress tensor in a fractured rock approximates to the far-field stress tensor,9,46 we can use the Euclidean distance between a local
stress tensor Si and the mean stress tensor S̄, i.e.

=d S S S S( , ¯) ¯ ,i i F (A.3)

as an indicator of local stress perturbation to the far-field stress state, where ||·||F denotes the Frobenius norm (also known as the Euclidean norm or
Hilbert-Schmidt norm).47 In a purely uniform stress field, d S S( , ¯) is zero throughout, while for a heterogeneous stress field, d S S( , ¯) can vary
significantly from point to point in the system.

In addition, the variability of stress tensor can be adequately represented by the variability of its distinct tensor components in a multivariate
statistics manner.26 Thus, the overall variability of a stress field can be described by its effective variance – a widely used concept in the field of
multivariate statistics for group dispersion measure.48 For a stress tensor Si, its distinct components form a stress vector si as:

= = =S S S S S Ss Svech( ) [ ] [ ] ,i i i i i i i ixx, yx, yy,
T

xx, xy, yy,
T (A.4)

where vech(·) is the half-vectorisation function that stacks only the lower triangular (i.e. on and below the diagonal) columns of a tensor into a
column vector containing only the distinct components. The effective variance is then calculated as49:

=
+

V S( ) det( ) ,e
p p1

2
( 1)

(A.5)

where p is the dimension of the stress tensor (p=2 here), and is the covariance matrix of the stress vector field s:

= =
=n

s s s s s scov( , ) 1 [( ¯) ( ¯) ],
i

n

i i
1

T

(A.6)

where s̄ is the mean stress vector:

Fig. 12. Rose diagram showing the variation of (a) total strain from frictional sliding ε and (b) effective variance of the stress field Ve(S) in the heterogeneous
fractured rock with respect to the orientation θ of the far-field stress field of Smax =15.0MPa and Smin =5.0MPa.

Fig. 13. Schematic illustration of the different
regimes where stress variability in fractured
rocks is dominated by heterogenous rock ma-
trix or fractures, which depends on the mate-
rial homogeneity index m, the far-field stress
condition and the fracture network properties.
Note that the actual boundaries between dif-
ferent regimes do not necessarily have to be
linear.

Q. Lei, K. Gao International Journal of Rock Mechanics and Mining Sciences 113 (2019) 121–133

131



=
=n

s s¯ 1 .
i

n

i
1 (A.7)

The effective variance gives a scalar-valued measure of how spread out a stress tensor group is with respect to their mean, and it has the same unit
as the variance of stress components, i.e. square of the unit of stress. We therefore use the effective variance to measure the bulk stress variability in
the heterogeneous fractured rocks. The larger the effective variance is, the more dispersed the stress field is.

Appendix B. Mesh sensitivity analysis

We have conducted a mesh sensitivity analysis of the numerical model for calculating stress variability in heterogeneous fractured rocks, in which
a range of average element sizes h=0.05, 0.075, 0.1, 0.125 and 0.15m, covering from fine to coarse mesh configurations, have been explored. We
focus on the very heterogeneous rock with a homogeneity index of m=1.25, which is considered to be more sensitive to mesh size compared to
other relatively homogeneous rocks with larger m values. We also generate ten realisations of Weibull distribution of rock moduli to examine the
potential randomness effect (i.e. modulus values are randomly assigned to model elements). As shown in Fig. A.1, with the increase of model
resolution (i.e. decrease of h), the local stress perturbation can be captured in more detail, especially in the vicinity of fractures. We also compare the
results of the effective variance Ve of the entire stress field derived from the models of different element sizes (Fig. A.2a). It can be seen that with the

Fig. A.1. Mesh sensitivity analysis of simulated local stress perturbation field d S S( , ¯) in the heterogeneous fractured rock with a homogeneity index of m =1.25
under different far-field stress ratios Here, h denotes the average element size.

Fig. A.2. (a) Mesh sensitivity analysis of calculated effective variance of the stress field Ve(S) in the heterogeneous fractured rock with a homogeneity index of
m=1.25 under different far-field stress ratios. Here, h denotes the average element size and the error bars denote the standard deviation of the results of ten material
heterogeneity realisations. (b) Variation of simulation runtime with respect to the average element size. Note that the runtime is based on a desktop computer
equipped with an Intel(R) Xeon(R) CPU E3–1284L v4@2.90 GHz.
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increase of model resolution (i.e. decrease of h), Ve exhibits a slight increase, suggesting that more stress variability is captured in refined models.
However, the computational runtime increases significantly with the model refinement (Fig. A.2b). Thus, an average element size of 0.075m is
adopted in the paper to achieve computational efficiency without sacrificing model accuracy.
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