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1 Introduction

In situ stress is an important parameter in rock mechanics 
and often displays significant variability in fractured rock 
masses (Day-Lewis 2008; Hyett 1990; Martin 1990; Mat-
sumoto et al. 2015; Obara and Sugawara 2003). Therefore, 
rigorous statistical approaches for stress variability charac-
terisation are essential components and prerequisites for ade-
quate interpretation of stress measurements. However, cur-
rently in rock mechanics, stresses are customarily processed 
by analysing the principal stress magnitude and orientation 
separately (e.g. Brown and Hoek 1978; Hakami 2011; Hast 
1969; Herget 1988; Lisle 1989; Zhao et al. 2013). As previ-
ous works show, these customary scalar/vector approaches 
violate the tensorial nature of stress and may yield errone-
ous results (Dyke et al. 1987; Gao 2017; Gao and Harrison 
2016b, 2017, 2018b, c; Hudson and Cooling 1988; Hudson 
and Harrison 1997).

Since stress is a second-order tensor, it has been advo-
cated by many researchers that stress should be processed 
based on stress tensors referred to a common Cartesian coor-
dinate system (Dyke et al. 1987; Dzik et al. 1989; Hudson 
and Cooling 1988; Hyett et al. 1986; Jupe 1994; Koptev 
et al. 2013; Martin et al. 1990; Martin and Simmons 1993; 
Walker et al. 1990). By considering the tensorial nature of 
stress, we have proposed a series of tensor-based approaches, 
such as Euclidean mean (a mean stress calculation approach) 
(Gao and Harrison 2016b, 2018a) and effective variance (a 
scalar-valued measure of overall stress variability) (Gao 

and Harrison 2016a, 2018c; Gao and Lei 2018), for stress 
variability characterisation. In the present paper, using these 
recently developed tensor-based approaches, the in  situ 
stresses measured at the Atomic Energy of Canada Lim-
ited (AECL)’s Underground Research Laboratory (URL) in 
south-eastern Manitoba of Canada (Martin and Christians-
son 1991b) are re-examined to provide, for the first time, a 
fully quantitative interpretation of stress measurement data 
to confirm and enhance the qualitative conclusions drawn by 
the original authors and give an example of how the tensor-
based approaches may assist in stress data elucidation.

In the following sections, the background of the in situ 
stress measurements, the Euclidean mean of the measured 
in situ stresses and its comparison with the scalar/vector 
mean, as well as their effective variance are calculated and 
presented. Conclusions are given regarding the applicability 
and efficacy of the tensor-based approaches for stress vari-
ability characterisation. The definitions of Euclidean mean, 
scalar/vector mean and effective variance are shown in the 
Appendices.

2  Background of the In Situ Stress 
Measurements

To investigate how in situ stresses are distributed in a rela-
tively uniform, massive granite rock mass, Martin and Chris-
tiansson (1991a) conducted 101 overcore in situ stress tests 
using the CSIR triaxial strain cell (Martin and Christiansson 
1991b) on the 240 Level of the AECL’s URL (Fig. 1), where 
geomechanics research was conducted during the period of 
about 1982–2004 to assess the feasibility of deep disposal 
of nuclear fuel waste in a plutonic rock mass (Chandler 
2003; Martin 1990). The granite in the whole testing area 
is essentially unfractured except for a single fracture—the 
Room 209 Fracture, which strikes about 040°/220°, dips 
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sub-vertically, and contains several short, subparallel joints 
that form a “fracture zone” up to 0.4 m wide (Martin and 
Christiansson 1991a) (Fig. 2). The tests were performed in 
13 boreholes located in an area about 60 m × 60 m in plan 

view (Fig. 2). These tests can be deemed as being con-
ducted within a relatively small space and time range, and 
spatial and temporal variabilities of the stress data were not 

Fig. 1  Location of the AECL’s URL and the position of the 240 Level (after Martin and Simmons 1993)

Fig. 2  Plan view of the 240 
Level of the AECL’s URL 
showing borehole locations of 
overcore testing (after Martin 
and Christiansson 1991a)
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considered in the original paper, and thus will also not be 
discussed in the current analyses.

Two groups of in situ stress results were obtained in this 
area by Martin and Christiansson (1991a) based on one set 
of strain measurements being subjected to two interpretive 
models. Initially, the stress results were interpreted from 
strain measurements using a continuous homogeneous iso-
tropic linear elasticity model (referred to as the “isotropic 
model” hereafter). This first group of stress results was 
tabulated in Table A1 in Martin and Christiansson (1991a). 
Based on these initially interpreted stress data, the 240 Level 
was divided into two domains (Fig. 2), i.e. a domain contain-
ing the fracture zone which has a �1 trend of NE–SW and 
a domain away from the fracture zone in which �1 trends 
approximately E–W (Martin and Christiansson 1991a). The 
E–W trend for �1 in the latter domain disagrees with the 
general in situ stress state around the URL, which is NE–SW 
and almost parallel to the Room 209 Fracture (Martin and 
Christiansson 1991a).

Laboratory testing of the overcore samples from bore-
holes in the domain away from the fracture zone showed 
great stress-induced micro-cracking, which created ani-
sotropy in the overcore samples. By approximating this as 
transverse isotropy, the transverse plane and the anisotropic 
elastic constants were determined and the in situ stresses 
reinterpreted using an anisotropic solution based on the 
work of Amadei (1983, 1984) (referred to as the “anisotropic 
model” hereafter). This second group of stress results was 
shown in Table A2 in Martin and Christiansson (1991a), 
and—according to the original authors—is more uniform 
and displays better consistency with the general in situ stress 
state around the URL than that of the first group.

In the analysis presented here, first the scalar/vector and 
Euclidean means corresponding to these two interpretive 
models are calculated to examine the difference between 

the calculation approaches. Then the effective variances cor-
responding to these two models are obtained to confirm the 
authors’ statements regarding the appropriateness of the ani-
sotropic model for stress data interpretation. Finally, using 
the second stress data group corresponding to the anisotropic 
model, the influence of the fracture zone on stresses in the 
two domains based on proximity to the fracture zone is ana-
lysed by comparing the effective variances of the stresses in 
these two domains. Since in the second stress data group, 
the stress in borehole OC4 at the depth of 2.15 m is missing, 
for reasonable comparison of these two interpretive models, 
only 100 in situ stresses in each group are considered in the 
following calculations.

3  Calculation of Euclidean Mean and Its 
Comparison with Scalar/Vector Mean

Although Martin and Christiansson (1991a) pointed out that 
the scalar/vector approach may produce non-orthogonal 
mean principal stresses and they essentially calculated the 
mean stress using the correct tensorial approach, here, to 
compare the difference between the scalar/vector and Euclid-
ean means and to draw people’s attention regarding the error 
that may be caused by the scalar/vector approach, these 
two means of all in situ stresses interpreted using both the 

Table 1  Scalar/vector and Euclidean means of all in situ stress data interpreted using the isotropic model, presented in terms of principal stress 
magnitude and orientation

Mean �
1

�
2

�
3

�
1
 (MPa) Trend (°) Plunge (°) �

2
 (MPa) Trend (°) Plunge (°) �

3
 (MPa) Trend (°) Plunge (°)

Customary mean 32.5 243 27 18.4 139 52 12.2 024 67
Euclidean mean 29.3 249 18 19.4 154 16 14.3 025 65

Table 2  Scalar/vector and Euclidean means of all in situ stress data reinterpreted using the anisotropic model, presented in terms of principal 
stress magnitudes and orientations

Mean �
1

�
2

�
3

�
1
 (MPa) Trend (°) Plunge (°) �

2
 (MPa) Trend (°) Plunge (°) �

3
 (MPa) Trend (°) Plunge (°)

Customary mean 29.4 217 31 16.0 115 48 11.3 339 57
Euclidean mean 27.4 223 17 16.3 118 41 13.0 330 45

Table 3  Angles between the scalar/vector mean principal stress ori-
entations of the stress data interpreted using both the isotropic and 
anisotropic models

Customary mean 
principal stresses

�
1
 and �

2
 (°) �

2
 and �

3
 (°) �

3
 and �

1
 (°)

Isotropic model 77 52 82
Anisotropic model 75 69 79
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isotropic and anisotropic models are calculated. Particularly, 
to facilitate the comparison, for the Euclidean mean, after 
obtaining the mean stress tensor using Eq. (2), its eigenval-
ues and eigenvectors are further calculated to interpret the 
magnitudes and orientations of the principal mean stresses.

The calculated mean stresses in terms of principal stress 
magnitude and orientation for the isotropic and anisotropic 
models are tabulated in Tables 1 and 2, respectively. It can 
be observed that there is a distinct difference between the 
scalar/vector mean and Euclidean mean for both interpre-
tative models. For example, Table 1 shows a significantly 
larger �2 plunge for the scalar/vector mean than that for the 
Euclidean mean, and a similar situation occurs for �1 plunge 
in Table 2. In addition, in terms of mean principal stress 
magnitude, the scalar/vector approach produces larger �1 
and smaller �3 than the Euclidean mean; for mean principal 
stress orientation, the scalar/vector approach produces non-
orthogonal results, as demonstrated in Table 3 by the angles 
between the scalar/vector mean principal stress orientations 
for both interpretive models.

For better comparison between the scalar/vector 
mean and Euclidean mean, the calculated mean stresses 

corresponding to each interpretive model are further plot-
ted in Figs. 3 and 4, together with the histograms of principal 
stress magnitudes and hemispherical projections of principal 
stress orientations for each principal stress. These two fig-
ures clearly show the discrepancy in terms of both principal 
stress magnitude and orientation between the scalar/vector 
mean and the Euclidean mean. At first sight, it seems that 
the scalar/vector approach yields more reasonable results 
since both the scalar/vector mean principal stress magni-
tudes and orientations are located at almost the centre of 
their respective sample data. However, this is an artefact 
as the scalar/vector approach averages the principal stress 
magnitude and orientation separately, with the result that it 
yields extreme results, i.e. larger major and smaller minor 
principal stress magnitudes than that of the Euclidean mean. 
This may be because in the scalar/vector approach the prin-
cipal stress magnitudes are sorted first to distinguish the 
major, intermediate and minor principal stresses, and then 
they are averaged separately. Thus, extreme results can be 
easily produced.

Additionally, it can be seen from Tables 1 and 2 and 
Figs. 3 and 4 that the �1 trend of the Euclidean mean of 

 100 actual stresses

(a) σ  (MPa)1 (b) σ  (MPa)2 (c) σ  (MPa)3

(d) σ  1 (e) σ  2 (f) σ  3

scalar/vector meanEuclidean mean

general σ  trend around the URL1

W W W

N N N

S S S

E E E

15 25 35 45 55
0

5

10

15

20

C
ou

nt

5 15 25 35
0

5

10

15

20

C
ou

nt

0 5 10 15 20
0

5

10

15

20

C
ou

nt

Fig. 3  Histograms of the principal stress magnitude and hemispherical projections of principal stress orientation of the in situ stress data on the 
240 Level of the AECL’s URL reinterpreted using the isotropic model, together with their scalar/vector mean and Euclidean mean
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the overall stress data reinterpreted using the anisotropic 
model is closer to the general in situ stress state around the 
URL—NE–SW, which confirms the authors’ statement that 
the anisotropic model produces stress results more consist-
ent with the general stress state. However, for each bore-
hole, Martin and Christiansson (1991a) only plotted mean 
�1 trends using the stress data interpreted by the isotropic 
model; here, to further examine the effect of the anisotropic 
model on the consistency of in situ stresses with respect to 
the general stress state, the �1 trends of the Euclidean mean 
of the stress data from each borehole reinterpreted using the 
anisotropic model are also plotted (Fig. 5). The results show 
that, for each borehole, the mean �1 trends of the stress data 
reinterpreted using the anisotropic model are closer to the 
general stress state around the URL than that of the isotropic 
model, which is consistent with the results calculated using 
all stress data.

Next, stress dispersions corresponding to the two inter-
pretive models are calculated to compare the effectiveness 
of the models for in situ stress measurement interpretation 
in terms of stress uniformity, as well as to demonstrate the 
efficacy of effective variance as a quantification tool for 
assisting in stress measurement elucidation.

4  Calculation of Stress Dispersion

Figure 5 shows that the anisotropic model generates less vari-
able in situ stress measurement results than does the isotropic 
model. Here, the dispersions of the two groups of stress data 
interpreted using the isotropic and anisotropic models are cal-
culated using the effective variance defined in Eq. (11). The 
calculated results are shown in Table 4, and show a smaller 
effective variance for the stress data reinterpreted using the 
anisotropic model than when using the isotropic model. These 
calculated stress dispersions provide a quantitative support 
to the statement in Martin and Christiansson (1991a) that by 
employing the anisotropic model, the interpreted stress data 
give a reasonably more uniform stress state on the 240 Level.

In addition, Martin and Christiansson (1991a) also asserted 
that the stresses in the domain containing the fracture zone are 
perturbed by the fracture and thus may be less uniform than the 
ones in the domain away from the fracture zone. To investigate 
this assertion, two stress domains—one containing the frac-
ture zone (i.e. stress data from boreholes ORT1, ORT2, ORT3, 
OC3, OC4 and RM209) and one away from the fracture zone 
(stress data from boreholes OC1, OC2, OC5 and PH3)—are 
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Fig. 4  Histograms of the principal stress magnitude and hemispherical projections of principal stress orientation of the in situ stress data on the 
240 Level of the AECL’s URL interpreted using the anisotropic model, together with their scalar/vector mean and Euclidean mean
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established and their dispersions calculated to compare the 
influence of the fracture zone on stress variability in these two 
domains. To give a more distinct comparison, the stress data 
from boreholes OC6, OC7 and OC8 are not considered in the 
latter domain since they are located relatively closer to the frac-
ture zone and Martin and Christiansson (1991a) also noted that 
the stress states in these three boreholes may be affected by the 
junction of Room 209 and Room 210. The calculated effective 
variances of these two domains using the data reinterpreted 

from the anisotropic model are shown in Table 5. The results 
show that the domain away from the fracture zone indeed has 
smaller stress dispersion and thus the stresses are more uniform 
and less perturbed by the fracture zone, which confirms the 
original authors’ statement regarding the influence of the frac-
ture zone on stress variability in a quantitative manner. Here, 
the relatively smaller effective variances than the effective vari-
ance of all stress data reinterpreted using the anisotropic model 
shown in Table 4 indicate that the stresses in each of these two 
individual domains are less variable when compared with the 
overall stress data on the 240 Level of the URL.

5  Conclusions

This paper presents an application of the proposed tensor-
based mean stress and stress dispersion calculation approaches 
using the in situ stress data measured on the 240 Level of the 
AECL’s URL and interpreted using both the isotropic and ani-
sotropic models. Comparison of the scalar/vector and Euclidean 
mean stresses shows that the former may deviate significantly 
from the correct Euclidean mean, as well as producing non-
orthogonal principal directions. This again confirms the draw-
back of the scalar/vector approach which processes principal 
stress magnitude and orientation separately. Calculation of the 

Fig. 5  Trend of major principal 
stress of Euclidean mean of 
the stress data in each borehole 
interpreted using the isotropic 
and anisotropic models (after 
Martin and Christiansson 
1991a)
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Table 4  Effective variance of the stresses interpreted using the iso-
tropic and anisotropic models

Isotropic model Anisotropic model

Effective variance  (MPa2) 12.37 10.89

Table 5  Effective variances of the stress domains containing the frac-
ture zone and away from the fracture zone using the data reinterpreted 
using the anisotropic model

Domain containing 
fracture zone

Domain away from 
fracture zone

Effective variance 
 (MPa2)

7.69 6.78
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Euclidean means of all stress data and the stress data from each 
borehole, interpreted using both the isotropic and anisotropic 
models, demonstrates that the stress data reinterpreted using the 
anisotropic model are closer to and consistent with the overall 
NE–SW orientation around the URL. Further comparison of the 
stress dispersion values corresponding to the two interpretative 
models shows that the stress states resulting from the aniso-
tropic model show reduced dispersion than those corresponding 
to the isotropic model. All these quantitative calculations and 
comparisons confirm that approximating the rock as a trans-
versely isotropic material due to the micro-cracking and thus 
using the anisotropic model for interpreting the stress at the 240 
Level of the URL in Martin and Christiansson (1991a) are ful-
filled. Comparison of the stress data in domains containing the 
fracture zone and away from the fracture zone in terms of effec-
tive variance shows that the stress state is less variable in the 
domain away from the fracture zone. Together, these examina-
tions demonstrate the applicability of the proposed tensor-based 
stress variability characterisation approaches as effective tools 
to provide more detailed and quantitative elucidation of stress 
measurement data. All these provide, for the first time, a quan-
titative support to the original authors’ qualitative assessments.

This paper re-examines the in situ stress data measured 
and interpreted almost 30 years ago. It is worth mentioning 
that the rock stress estimation approaches have been signif-
icantly developed in recently years, especially with the set 
of papers in the ISRM Suggested Methods for rock stress 
estimation (e.g. Christiansson and Hudson 2003; Hudson 
et al. 2003; Sjöberg et al. 2003; Stephansson and Zang 
2012). The analyses in Martin and Christiansson (1991a), 
as well as in the current paper, give an indication that a 
stress measuring strategy with measurements in different 
orientations and, if possible, using alternative approaches 
such as considering the rock mass anisotropic properties 
for stress interpretation, is recommended to reduce the 
uncertainties related to the estimation of rock stresses.
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Appendix A: List of Symbols

AECL Atomic Energy of Canada Limited
URL Underground Research Laboratory
p Dimension of the stress tensor, p = 2 or 3
�
i

ith stress tensor, i = 1, 2, …n

�
E

Euclidean mean stress tensor

�
d

Distinct tensor components of stress tensor �
i

�
d

Mean of �
d

� Plunge of principal stress
� Mean of �
� Trend of principal stress
� Mean of �
� Normal component of stress tensor
� Mean of �
�
1

Major principal stress
�
1

Mean of �
1

�
2

Intermediate principal stress
�
2

Mean of �
2

�
3

Minor principal stress
�
3

Mean of �
3

� Shear component of stress tensor
� Mean of �
� Covariance matrix of distinct tensor components
cov(⋅) Covariance matrix function
V
e|d Effective variance

vech(⋅) Half-vectorisation function
| ⋅ | Matrix determinant
[ ⋅ ]T Matrix transpose

Appendix B: Euclidean Mean and Scalar/
Vector Mean
Mean stress is a fundamental statistical characteristic of a 
stress data group and is commonly used as an indicator of 
the overall stress state in a rock mass (Hakala et al. 2014; 
Han et al. 2016; Martin 2007; Martin et al. 2003; Martin 
and Simmons 1993; Siren et al. 2015). Gao and Harrison 
(2016b) have given a rigorous derivation of how the mean 
stress can be calculated in a tensorial manner—the so-called 
Euclidean mean—based on the distance measure between 
stress tensors in Euclidean space. For example, when the ith 
stress tensor �

i
 is denoted by:

where � and � are the normal and shear tensor components, 
respectively, the Euclidean mean stress is given as the aver-
age of each tensor component, i.e.

(1)�
i
=

⎡
⎢
⎢
⎣

�
x
i

�
xy

i

�
xz

i

�
y
i

�
yz

i

symmetric �
z
i

⎤
⎥
⎥
⎦

,
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Here, �E denotes the Euclidean mean stress tensor, and � and 
�  denote the corresponding mean tensor components. The 
derivation of Euclidean mean essentially provides a theoreti-
cal support to the existing tensorial applications of calculat-
ing mean stress by averaging the corresponding stress tensor 
components (e.g. Dyke et al. 1987; Hudson and Cooling 1988; 
Koptev et al. 2013; Martin and Christiansson 1991a; Walker 
et al. 1990).

For the scalar/vector mean, the mean principal stress magni-
tudes are calculated by averaging each principal stress sepa-
rately, i.e.

and the principal stress orientations are calculated using 
directional statistics (Davis 1986, p. 333). For this, orienta-
tions are converted to unit vectors, namely,

where the coordinate system is x east, y north and z ver-
tically upwards, and � ∈ [0, 2�] (clockwise positive from 
north, looking downwards) and � ∈ [0, �∕2] (positive from 
horizontal plane to vertically upwards) denote the trend and 
plunge of principal stress, respectively. The range used here 
for plunge avoids ambiguous results caused by the bi-direc-
tional nature of principal stress orientation. The mean vector 
that denotes the mean orientation is:

where

The orientation of the scalar/vector mean principal stress is 
then

(2)�E =
1

n

n�

i=1

�
i
=

⎡
⎢
⎢
⎣

�
x

�
xy

�
xz

�
y
�
yx

symmetric �
z

⎤
⎥
⎥
⎦

=
1

n

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

n∑

i=1

�
x
i

n∑

i=1

�
xy

i

n∑

i=1

�
xz

i

n∑

i=1

�
y
i

n∑

i=1

�
yz

i

symmetric
n∑

i=1

�
z
i

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(3)�1 =
1

n

n∑

i=1

�1
i

, �2 =
1

n

n∑

i=1

�2
i

, �3 =
1

n

n∑

i=1

�3
i

,

(4)
x
i
= cos(�

i
) ⋅ sin(�

i
+ �), y

i
= cos(�

i
) ⋅ cos(�

i
+ �), z

i
= sin(�

i
),

(5)x̄ =

n∑

i=1

x
i

/

L, ȳ =

n∑

i=1

y
i

/

L, z̄ =

n∑

i=1

z
i

/

L,

(6)L =

√
(∑n

i=1
x
i

)2

+
(∑n

i=1
y
i

)2

+
(∑n

i=1
z
i

)2

.

(7)

⎧
⎪
⎨
⎪
⎩

𝜃 =

�
tan−1(x∕y) + 𝜋, if ȳ > 0

mod(tan−1(x∕y), 2𝜋), if ȳ ⩽ 0.

𝜑 = sin−1(z)

Appendix C: Effective Variance—
Scalar‑Valued Measure of Stress Dispersion

Stress in rock often displays significant variability, and 
it is important that the overall variability of stress can 
be characterised in a quantitative manner (Gao and Har-
rison 2016a, 2017, 2018c; Gao and Lei 2018; Lei and Gao 
2018). Dispersion, which denotes how scatter or spread 
out a data group is, is an effective parameter for such char-
acterisation. Since it has been demonstrated that the vari-
ability of stress tensors can be adequately represented by 
the variability of its distinct tensor components in a mul-
tivariate statistics manner (Gao and Harrison 2018b), we 
have proposed using the widely used concept of “effective 
variance” in multivariate statistics for group dispersion 
measure (Peña and Rodríguez 2003) as a scalar-valued 
measure of the overall stress variability (Gao and Harrison 
2016a, 2018c; Gao and Lei 2018; Lei and Gao 2018).

The effective variance of stress tensors can be calcu-
lated based on the covariance matrix of their distinct ten-
sor components referred to a common Cartesian coordi-
nate system. For a stress tensor denoted in Eq.  (1), its 
distinct tensor components are:

Here, the subscript “d” denotes “distinct”, [ ⋅ ]T represents 
the matrix transpose, and vech(⋅) is the half-vectorisation 
function which stacks only the lower triangular (i.e. on 
and below the diagonal) columns of a tensor into the 
column vector containing only its distinct components 
(Seber 2007, p. 246). For the stress vector �d , its covari-
ance matrix is

where �d denotes the mean vector and can be calculated by

(8)
�d = vech(�) =

[
�
x
�
yx

�
zx

�
y
�
zy

�
z

]T

=
[
�
x
�
xy

�
xz

�
y
�
yz

�
z

]T
.

(9)� = cov(�d) =
1

n

n∑

i=1

(�d
i

− �d) ⋅ (�d
i

− �d)
T
,

(10)�d =
1

n

n∑

i=1

�d
i

.
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Based on the covariance matrix � given in Eq. (9), the 
effective variance is defined as:

where | ⋅ | denotes the matrix determinant and p (p = 2 or 3) 
is the dimension of the stress tensor. Similar to the variance 
and standard deviation of scalar data, the smaller the effec-
tive variance, the more uniform would be the stress data.
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