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A B S T R A C T

By employing the effective variance of stress tensors as a scalar-valued measure of stress heterogeneity, we
quantitatively analyse the influence of boundary constraint stiffness on numerically derived stress distribution in
a fractured rock mass. The results reveal a decreasing trend in the effective variance of stress field with an
increasing boundary constraint stiffness. This work demonstrates the efficacy of effective variance for stress
heterogeneity quantification, and also indicates that the boundary constraint stiffness can affect stress modelling
results. We suggest that quantitative evaluation of the effects of boundary constraints may be needed in geo-
mechanical modelling of fractured rock masses.

1. Introduction

Crustal rocks, embedded with widespread natural fractures, are
subjected to stresses, mainly due to the overburden and tectonic effects
[1]. Thus, the in situ state of stress is an important parameter for a wide
range of endeavours in rock mechanics [1–6]. Because of the inherent
complexity of fractured rock masses in terms of varying rock properties
and presence of discontinuities, the stress state often exhibits significant
heterogeneity [4,7–10]. The in situ stress measurement results shown in
Fig. 1 exemplify the dramatic variation in both the principal stress
magnitude and orientation along two sides of a fault [8].

However, a thorough characterisation of stress heterogeneity in the
field is very challenging, which requires sufficient and detailed in situ
stress measurements [11]. Due to implementation difficulties and
budget limits, it is often difficult to conduct a large number of stress
measurements in real engineering projects. Numerical simulation pro-
vides an alternative and fast solution to this issue [11,12]. In the past
few decades, many numerical models have been developed to solve
different rock mechanics problems [13–15], while only a few efforts
have been devoted to investigating the phenomena of stress hetero-
geneity [11,16–21]. In these previous geomechanical modelling stu-
dies, different types of numerical boundary constraints, e.g. stress
boundary constraints [3,16,21–25], displacement boundary constraints
and combined stress-displacement boundary constraints [17,18,26–28],
have been assumed for simulating the geological confinement imposed
by surrounding rocks onto the problem domain (e.g. Fig. 2). It is found
that rare discussions were made regarding the influence of different
boundary constraint types on simulation results, which needs to be

examined in a quantitative manner.
In order to quantify the variability of stress tensor fields, Gao and

Harrison [29,30] proposed a stress variability characterisation ap-
proach using “effective variance” as a scalar-valued measure of the
overall stress heterogeneity. This metric for stress tensor data has the
similar functionality to the variance and standard deviation of scalar
data. This effective variance approach has proven its accuracy and ro-
bustness in quantifying stress heterogeneity in complex geological
media [29–31].

In this paper, we use the two-dimensional (2D) finite-discrete ele-
ment method (FEMDEM) [32,33] to simulate the stress distribution in a
fractured rock mass subjected to different types of boundary con-
straints. We employ the effective variance method to quantify the in-
fluence of boundary constraint stiffness on the simulated stress results.
We aim to draw attention from the community to the potentially im-
portant effects of boundary constraint on geomechanical modelling. In
the rest of the paper, we first introduce the effective variance method in
Section 2, followed by a brief description of the FEMDEM approach in
Section 3. We then present the model setup and simulation results in
Section 4. Finally, a few concluding remarks are presented.

2. Effective variance – scalar-valued stress dispersion
quantification

As mentioned earlier, stress in rock masses often displays significant
heterogeneity. It is important that such heterogeneity can be char-
acterised in a quantitative manner [34–37]. Dispersion, which denotes
how scatter or spread out a data group is with respect to its mean, is an
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effective parameter for such characterisation. However, stress is tensor
in nature formed by six distinct components. The conventional de-
coupled analysis of principal stress magnitude and orientation, which
was usually adopted in the literature [38–41], may lead to biased as-
sessment results [29,31,34,36,42,43].

To tackle this problem, considering that the variability of stress
tensors can be adequately represented by the variability of its distinct
tensor components in a multivariate manner [43], Gao and Harrison
[29,30] proposed to employ the concept of “effective variance” for
stress variability characterisation. The method of effective variance
originated from the research field of multivariate statistics for group
dispersion measure [44]. The effective variance of stress tensors can be
calculated based on the covariance matrix of their distinct tensor
components referred to a common Cartesian coordinate system. The
detailed procedure is described as follows.

For a stress tensor
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Here, the subscript “d” denotes “distinct”, [·]T represents the matrix
transpose, and vech(·) is the half-vectorisation function which stacks
only the lower triangular (i.e. on and below the diagonal) columns of a
tensor into column vector containing only its distinct components [45,
p. 246]. For the stress vector sd, its covariance matrix is
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where sd denotes the mean vector and can be calculated by
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Based on the covariance matrix Ω given in Eq. (3), the effective var-
iance is defined as

=
+

V Ω| | ,e |d
p p1

2
( 1)

(5)

where |·| denotes the matrix determinant and p =p( 2 or 3) is the di-
mension of the stress tensor.

The effective variance has the same unit as the variance of the stress

tensor components, i.e. square of the unit of stress. Similar to the var-
iance and standard deviation of scalar data, the larger the effective
variance, the more dispersed the stress tensor data would be.

diorite

 6 m 

 6 m
 

 3 m
  3 m

 

granodiorite
skarn

skarn
10 MPa

0

5
10

15
20

25
30 (m)

fault

Fig. 1. Dramatic stress change observed near a fault. Note that the pairs of orthogonal
intersecting lines represent the principal stress orientations and their length denote the
principal stress magnitudes at different locations [8].
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(a) Boundary loading acting directly on the 
rock model [3, 16, 21-25]

(b) Direct loading and roller boundary on the rock model [17]
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Fig. 2. Various boundary constraints have been used in geomechnical modelling in the
literature.
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3. Finite-discrete element method (FEMDEM)

The numerical model in this work is based on the finite-discrete
element method (FEMDEM) originally developed by Munjiza and his
colleagues [33]. The FEMDEM model represents a 2D solid using a fully
discontinuous mesh of three-node triangular finite elements, which are
linked by four-node crack elements (Fig. 3) [6,46]. The motions of finite
elements are governed by the forces acting on elemental nodes. The
governing equation is given by [33]:

+ =Mx f f¨ ,int ext (6)

where M is the lumped nodal mass matrix, x is the vector of nodal

displacements, fint are the internal nodal forces induced by the de-
formation of triangular elements, fext are the external nodal forces in-
cluding external loads f1 contributed by boundary conditions and body
forces, cohesive bonding forces fb caused by the deformation of crack
elements, and contact forces fc generated by the contact interaction
between discrete elements.

The deformation of bulk materials is captured by elastic constant-
strain triangular finite elements and solved using the finite strain for-
mulation [33]. The contact force between two triangular elements in-
teracting with each other is computed based on the penalty function
method [33]. The Mohr-Coulomb model with tension cut-off is em-
ployed to define the shear and tensile strength of the rock [47]. The
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Fig. 3. Schematic illustration of the FEM and DEM modules in the FEMDEM framework.
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Fig. 4. Simplification of the various boundary constraint types used in existing geo-
mechnical modelling (Fig. 2) and their generalisation from a boundary constraint stiffness
point of view.
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Fig. 5. The 1.5×1.5 m rock mass model from an outcrop in the southern margin of
Bristol Channel Basin [51].
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Fig. 6. Schematic description of the model used for stress simulation.

Table 1
Material properties of the rock mass.

Properties Value Unit

Density 2700 kg/m3

Young’s modulus Er 30 GPa
Poisson’s ratio 0.27 –
Joint friction coefficient 0.7 –
Internal friction coefficient of intact rock 0.8 –
Cohesion of intact rock 20 MPa
Tensile strength of intact rock 15 MPa
Energy release rate 800 J/m2
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Fig. 7. Distribution of major principal stress σ1 in the fractured rock and boundary plates associated with different constraint stiffness under loading stresses of =P 10x MPa and
=P 5y MPa.
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smeared crack model embedded in the FEMDEM formulation further
permits the simulator to capture the emergence of new fracturing
driven by stress concentrations at fracture tips [48], which avoids the
generation of unrealistic high stress concentrations at fracture tips and
thus makes it an ideal tool for stress heterogeneity simulation. FEMDEM

has proven its efficiency and reliability as a computational tool to solve
various rock mechanics problems such as stress analysis [3,11], stress
effects on rock mass permeability [3,6,21,49] and rock fracture beha-
viour [21,46,50].

4. Generalised boundary constraint, model setup and simulation
results

4.1. Generalised boundary constraint

When building numerical models to simulate a fractured rock in a
compressive state, both stress boundary constraints (i.e. stress loaded
on the model boundary directly, Fig. 2a–c) [3,16,21–25] and dis-
placement boundary constraints (i.e. roller boundary condition, Fig. 2b
and c) [17,18,26–28] have been used. The first type prescribes the
stress values at the model boundary whilst allowing it to displace freely;
the second prohibits the model boundary from moving in a normal
direction, but the stresses at the boundary are unconstrained.

All these boundary conditions may be discriminated by using the
concept of boundary constraint stiffness (Fig. 4a–c). In other words,
they can be generalised as boundary plates with variable stiffness that
confining the fractured rock mass (Fig. 4d). This stiffness theoretically
could vary from zero to infinity by changing the Young’s modulus and
thickness of the loading plates. Zero stiffness (i.e. zero boundary plate
thickness) corresponds to the stress boundary constraint, while infinite
stiffness (i.e. infinite Young’s modulus or infinite thickness for
boundary plates) is equivalent to the displacement boundary constraint.
By adjusting the stiffness of each plate (Fig. 4d), all the different
boundary conditions shown in Fig. 2 can be incorporated. In reality, the
problem domain is embedded in the geological system and subjected to
both stress and displacement constraints. Thus, it is useful to under-
stand the effects of boundary constraint stiffness on the geomechanical
response of fractured media.

4.2. Model setup

The fractured rock mass model used in the present investigation is
generated based on an outcrop of fractured limestone on the southern
margin of the Bristol Channel Basin, UK [51]. The original whole out-
crop has dimensions of approximately 15m in both x- and y-directions,
and contains two conjugate fracture sets striking approximately 140°
and 100°, respectively (Fig. 5a). To reduce computational cost, a
1.5× 1.5m domain is selected (Fig. 5b). By employing the generalised
boundary constraint as shown in Fig. 4d, four identical plates with
adjustable stiffness are placed on each side of the model domain and
subjected to uniform compressive loadings (Fig. 6). The boundary
loadings were increased gradually until they reached the target values.
The boundary plates are modelled as isotropic, elastic materials, and
their stress and deformation are calculated based on the finite strain
formulation [33]. The interaction between the boundary plate and the
rock specimen is computed using the penalty function method [33],
such that the normal loading are transmitted from the boundary plate
to the rock via their interface. The friction coefficient at the plate-rock
interface is set zero, so no frictional force is generated at the rock
periphery. To avoid contact of adjacent plates during the loading pro-
cess, small chamfered corners with an edge length of 1 cm (0.67% of the
rock mass edge length) are cut at the four corners of the rock model.
This size of chamfered corner was carefully chosen after several trials to
make it small enough to minimise the influence on stress results and
large enough to avoid plate contact after deformation.

The rock mass is discretised using an unstructured triangular mesh
(72,272 elements in total) with an average element edge length of
∼1 cm. Material properties of the rock mass are presented in Table 1.
For simplicity, the four boundary plates are chosen to have identical
constraint stiffness in each simulation, which is defined by the Young’s
modulus Ep and thickness Δ of the plates. The larger the Young’s
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modulus Ep and plate thickness Δ, the stiffer is the boundary constraint.
We speculate that for stiffer boundary constraint, the rock mass tends to
be tighter and the perturbation of discontinuities to stress becomes less
significant, with the result that the stress will be relatively more
homogeneous with a smaller dispersion.

When the model reaches equilibrium, the stress tensor of each
constant-strain element in the rock mass domain is extracted and their
effective variance calculated. The idealised stress boundary constraint
(i.e. zero boundary constraint stiffness corresponding to =E 0p and

=Δ 0, Fig. 2a) and displacement boundary constraint (i.e. infinite
boundary constraint stiffness corresponding to = ∞Ep and/or = ∞Δ ,
Fig. 2b and c) are not examined here.

4.3. Simulation results

To explore the influence of boundary constraint stiffness on stress
dispersion in the fractured rock mass, we first choose a relatively small
thickness for the boundary plates, say Δ =0.1m, and vary the Young’s
modulus ratio between the plates and rock (i.e. E E/p r) from 0.25 to 100.
Fig. 7 shows some typical results of the distribution of major principal
stress σ1 in the fractured rock and boundary plates under loading
stresses of =P 10x MPa and =P 5y MPa. It can be seen that with the
increase of boundary stiffness, the stress distribution in the rock be-
comes less dispersed because of the enhanced restriction from the
boundary plates against the sliding of fractures. Furthermore, the high
stress zones in the plates seem to emerge close to the ends of those
fractures that intersect with the plate-rock interface, and the stress
concentration in the plates becomes stronger as the boundary stiffness
increases.

We then calculate the effective variance of the stress fields. The
variation of effective variance with respect to the plate/rock Young’s
modulus ratio for =P 10x MPa and =P 5y MPa, and =P 5x MPa and

=P 10y MPa using boundary plate thickness of 0.1m are presented in
Fig. 8. It is found that the Young’s modulus of the boundary plates has a
significant influence on stress dispersion. Generally, as the plate
Young’s modulus increases, the effective variance decreases. This
agrees with our speculation earlier – the larger the boundary constraint
stiffness, the smaller is the effective variance. The effective variance
asymptotically approaches to a plateau with further increase of the
plate modulus (Fig. 8). The oscillatory variation of the effective var-
iance between =E E/ 0.75p r and 2.5 for =P 10x MPa and =P 5y MPa
may be related to the instability caused by the reactivation of the two
pre-existing fracture sets at around =E E/ 1p r .

Then, thicker boundary plates with thickness of Δ =0.3m are used.
The stress dispersion calculation results are presented in Fig. 9, which
also agree with the previous speculation that in general the effective
variance is decreasing with respect to the increasing Young’s modulus
ratio, although the change here (from 17.4MPa2 to 14.7 MPa2) is not as
dramatic as the ones shown in Fig. 8 (from 23.0MPa2 to 15.0 MPa2).
This small change of effective variance demonstrates that for thicker
boundary plates, the contribution of same amount of Young’s modulus
change to the overall boundary constraint stiffness change is less sig-
nificant.

Next, boundary plates with a Young’s modulus equal to that of the
rock are used to further investigate the influence of boundary plate
thickness on stress dispersion as presented in Fig. 10. It shows a de-
creasing trend in the effective variance with the increase of the
boundary plate thickness, which again demonstrates that when the
boundary constraint stiffness increases, the stress dispersion decreases.
In addition, when the boundary plate thickness is greater than 0.3 m,
the effective variance reaches a plateau for both =P 10x MPa,

=P 5y MPa and =P 5x MPa, =P 10y MPa boundary loading scenarios
(Fig. 10). This is similar to the previous example for the increasing
Young’s modulus of boundary plates, i.e. when the boundary plate
thickness continues to increase beyond a certain value, it becomes more
like a rigid body; with the result that the tightness of the rock mass will

not be changed notably and thus a constant stress dispersion is reached.
Overall, the simulation results clearly demonstrate that boundary

constraint stiffness can significantly influence the modelling results of
stress heterogeneity in a fractured rock mass. Under more compliant
boundary constraints, the stress field inside the rock mass is more dis-
persed than that under stiffer boundary constraints.

5. Concluding remarks

We have quantitatively investigated the influence of boundary
constraint stiffness on stress dispersion in a fractured rock mass using
the two-dimensional FEMDEM and the effective variance as a scalar-
valued measure of the degree of stress heterogeneity. We generalised
the commonly used boundary constraints to a form involving four
plates loading on each side of a squared rock mass model. By adjusting
the loading plate stiffness, i.e. changing the thickness or Young’s
modulus of the plates, a series of simulations were conducted. Once the
model reached equilibrium under imposed compressive boundary
loadings, the complete stress tensor field of the entire domain were
extracted and the effective variance calculated. The simulation results
showed that the effective variance of the stress field decreases with the
increasing Young’s modulus and thickness of the boundary plates, im-
plying that the stiffer the boundary constraint is, the tighter the rock
mass is and thus the less dispersed the stress would be. Our observation
suggests that attentions may be needed on quantifying the role of
boundary constraint conditions in numerical modelling of stress dis-
tribution as well as other stress-dependent processes in fractured rock
masses.
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