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A B S T R A C T

In situ stress is an important parameter in rock mechanics, but localised measurements often display significant
variability; for meaningful analyses it is essential that such variability is appropriately quantified. Among many
statistics, dispersion, which denotes how scattered or spread out a data group is, is an effective tool to quantify
the amount of variability. However, dispersion measures are commonly only used for scalar and vector data, and
it is not yet clear what robust scalar-valued measures of stress dispersion – i.e. measures that are faithful to the
tensorial nature of stress – are available. Here, using stress tensors referred to a common Cartesian coordinate
system, we consider several dispersion measures, namely, Euclidean dispersion (a tensor version of standard
deviation), and the three widely used multivariate dispersions of total variation, generalised variance and ef-
fective variance, for scalar-valued quantification of stress variability and to improve the existing related work.
We compare these measures, show how they are linked to the covariance matrix of tensor components, and
derive their invariance with respect to change of coordinate system. Through the use of synthetic two-dimen-
sional stress data we demonstrate that these measures can effectively characterise the dispersion of stress data.
Further analysis of randomly generated three-dimensional stress data reveals that generalised variance and
effective variance, which consider both variances of, and covariances between, tensor components, are more
effective than Euclidean dispersion and total variation which ignore covariances. The transformational in-
variance of generalised variance and effective variance allows these measures to be applied in any convenient
coordinate system.

1. Introduction

In situ stress is an important parameter for a wide range of en-
deavours in rock mechanics, including rock engineering design, hy-
draulic fracturing analysis, rock mass permeability and evaluation of
earthquake potential.1–5 The stress in rock often displays significant
variability,4,6–9 and as an example Fig. 1 shows the dramatic change in
terms of both principal stress magnitude and orientation that can be
observed in a small zone.7 The stress variability may be influenced by
various factors such as intrinsic variation caused by the inherent
variability of discontinuities, anisotropy and heterogeneity of a frac-
tured rock mass, as well as extrinsic errors related to stress acquisition
methods. The acquisition error can be attributed to many aspects such
as poor instrument installation, inaccurate estimation of mechanical
parameters which are used in stress calculation, precision of the ac-
quisition instruments, as well as the assumptions and constraints that
have been made regarding the principal stresses in methods like hy-
draulic fracturing and borehole breakout analysis.1,10,11 In addition,
since stress may vary with respect to space (e.g. burial depth) and time,
spatial variability and temporal variability also exist.1 Therefore, the

variability of stress is complicated in nature and robust statistical ap-
proaches are necessary and prerequisite to fully understand the com-
plexity of stress variability. However, currently, such robust statistical
approaches for stress variability characterisation are still lacking.

To alleviate the complexity and make the investigation of stress
variability more realistic, assumptions have to be and have already
been made,1 and based on which, many examples of direct statistical
processing of stress data can be found in the rock mechanics litera-
ture.6,12–25 For example, it is common to assume that the analysed
stresses were obtained within a space and time span that are sufficiently
short such that their spatial and temporal variability can be ignored,
and the measured stress data are deemed to be practically accurate.
Based on these assumptions, several statistical approaches for stress
data processing, such as mean stress calculation, statistical distribution
model and confidence interval characterisation, have been devel-
oped.12–19 However, in rock mechanics, assessment of stress variability
is customarily undertaken by processing principal stress magnitude and
orientation separately using scalar- or vector-related statistics (e.g.
Fig. 2). This processing effectively decomposes the second order stress
tensor into scalar (principal stress magnitudes) and vector (principal
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stress orientations) components, to which classical statistics20 and di-
rectional statistics,21 respectively, are applied. Examples of this ap-
proach are widespread in the literature.6,22–34 All these customary
methods not only violate the tensorial nature of stress, but also yield
unreasonable results.16,35–37

Among many statistics, dispersion (also called scatter, denoting how
spread out is a data group) is an effective tool to quantify variability,
and it is commonly measured by standard deviation.20(p.54) However,
standard deviation is only defined for scalar and vector data, and a
robust approach to calculating the analogue of standard deviation for
stress data is still not clear. This is mainly because of the tensorial
nature of stress, which renders classical statistics inapplicable.35,38

Particularly, for customary applications, when it comes to stress dis-
persion, one may intuitively calculate the dispersion of principal stress
magnitude and orientation separately and hence obtain six dispersions.
However, neither the six dispersions individually nor any combination
of them gives a sense of the overall stress dispersion. A particular effect
of this is that it is currently difficult to quantitatively evaluate overall
stress variability, and impossible to quantitatively compare the varia-
bility of stress at different engineering sites. To overcome this shortfall
and improve the existing related working in rock me-
chanics,16,17,19,39,40 based on the above-mentioned assumptions, here
we present and examine several dispersion measure approaches, and
hence propose a scalar-valued stress dispersion measure for stress
variability characterisation.

Rather than customary approaches that analyse principal stress
magnitude and orientation separately, in order to remain faithful to the
tensorial nature of stress, stress variability analysis should be conducted
on the basis of tensor components obtained in a common Cartesian
coordinate system. This has been advocated previously by many
others.16–19,39–43 Several researchers have followed this technique in
stress dispersion related calculations.17,19,39,40,42 For example, as dis-
persion is generally determined relative to the mean, it is necessary to
first calculate the mean stress tensor as the mean of the stress tensors
referred to a common frame. This approach first takes a group of n
stress measurements in a global x-y-z Cartesian coordinate system, the
ith stress tensor Si of which is given by
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where SE denotes the Euclidean mean stress tensor,44 and σ and τ de-
note the corresponding mean tensor components. A number of reports
exist in the literature in which this Euclidean mean has been used as a
mean stress tensor.16,17,19,39–41

Based on Eq. (2), a so-called stress variance tensor may be calcu-
lated.17,19,39,40 After obtaining the mean stress tensor, a new coordinate
system (say, X-Y-Z) is established that coincides with the principal di-
rections of the mean tensor SE, and all the original stress tensors
transformed into this new coordinate system. Using the variance
function, = ∑ −− =x x xvar( ) ( )n i

n
i

1
1 1

2, and recognising that
= = =τ τ τ 0XY YZ ZX , the variance tensor is then calculated as

Fig. 1. Dramatic stress change in terms of both principal stress magnitude and
orientation observed near a fault (from Obara & Sugawara7).
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(b) Contouring of principal stress orientations

Fig. 2. Customary analyses of stress examine principal stress magnitude and
orientation separately using classical statistics and directional statistics, re-
spectively (after Brady & Brown34).
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However, this only gives the dispersion of each tensor component, and
an overall stress dispersion is not known.

As a development of this stress variance tensor approach, Dyke
et al.16 proposed a scalar-valued indication of the overall variability of a
tensor group. After obtaining the stress tensors in a common coordinate
system, say, X-Y-Z, each tensor component is processed individually to
calculate its variance, and finally the sum of the variances of the nine
tensor components, i.e. summation of all components in Eq. (3), is used
as a measure of the overall stress dispersion. Although this approach
indeed gives a scalar-valued measure of stress dispersion, its efficacy
and transformational invariance have not been examined. As a result, to
date there seems to have been no mathematically rigorous proposal and
systematic examination in rock mechanics community for scalar-valued
measures of stress dispersion.

In the present paper, in order to provide a robust approach to cal-
culating the scalar-valued stress dispersion, well-developed knowledge
from the statistics field is borrowed to extend what people have done
earlier in rock mechanics.16,17,19,39,40 To realise this, we first present
the Euclidean dispersion, a matrix-based approach that offers a tensor
version of standard deviation.44 Then, since stress variability can be
correctly and adequately represented by the variability of tensor com-
ponents in a multivariate manner,14,15,42,45,46 we continue and present
three widely used multivariate measures of dispersion (which for
brevity we refer to as “multivariate dispersion” hereafter) – namely,
total variation,47 generalised variance48 and effective variance49 – to
calculate scalar-valued stress dispersions. The relationship between
these stress dispersions is demonstrated and the derivations of their
transformational invariance is given in an analytical manner. Finally,
using synthetic and actual stress data, we show the applicability of
these stress dispersion measures, and give recommendations for prac-
tical application.

The present work is part of our recent researches on solving a fun-
damental problem in rock mechanics – how stress data can be robustly
processed in a statistical sense.38,44–46,50,51 In the current work we
mainly focus on proposing and examining scalar-valued measures of
stress dispersion from a statistical and mathematical point of view,
while considering the physical meaning of the stress tensor. Investiga-
tion of how various factors, such as measurement error, spatial and
temporal variability, may contribute to the overall stress variability and
how these factors can be distinguished in the calculation are beyond the
scope of this work. The exclusion of these aspects means that the stress
data used in the present work is assumed to be complete, practically
accurate and obtained using the same approach within a short space
and time span. Notations adopted here generally follow that bold up-
percase, bold lowercase and normal lowercase letters denote matrix,
vector and scalar, respectively, unless otherwise noted.

2. Scalar-valued measures of stress dispersion

To provide a robust approach for scalar-valued measures of stress
dispersion, here we present the Euclidean dispersion, a scalar-valued
dispersion we have defined previously,44 together with several disper-
sion measures widely used in multivariate statistics that may be ap-
plicable to stress dispersion quantification, and examine the relation-
ship between them.

2.1. Euclidean dispersion

Euclidean dispersion is a scalar-valued measure of the dispersion of
a stress tensor group that considers each tensor as a single entity in

Euclidean space. It is analogous to standard deviation, and can be in-
terpreted as the square root of the second central moment of a collec-
tion of stress tensors.44 Euclidean dispersion of stress tensors is defined
in a similar fashion to standard deviation for scalars, and is based on the
Euclidean distance between each tensor and the mean stress tensor.

For scalar datum xi, the Euclidean distance between it and the mean
x is

= −d x x x x( , ) ,i i (4)

where |·| denotes the absolute value. The scalar standard deviation
is20(p.56)
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Here the n is used as the denominator, rather than −n( 1), since we
want to emphasise that we “average” the results. For consistency, si-
milar reasoning applies in the following where n appears in the de-
nominator.

Continuing, the Euclidean dispersion of stress tensors is based on
the Euclidean distance between tensors, which for the two stress tensors
S1 and S2 is52(p.117)
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where ⋅ F denotes the Frobenius norm (also called the Euclidean
norm). The Frobenius norm of a 3×3 stress tensor S is given by53(p.72)
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where ⋅tr( ) denotes the trace of a matrix. Thus, the Euclidean dispersion
of stress tensors is
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where SE is the Euclidean mean tensor (Eq. (2)), and clearly shows how
spread out the stress data are with respect to their mean.44

2.2. Multivariate dispersions

Matrix-valued quantities play a pivotal role in many subjects such as
solid mechanics, physics, earth science, medical imaging and eco-
nomics,54 and to characterise the variability of such matrix-valued
quantities, matrix variate statistics – as a generalisation of multivariate
statistics – has been developed.54 We have previously examined the
applicability of multivariate statistics and matrix variate statistics to
stress tensor components.45,55 Matrix variate statistics and multivariate
statistics are often used interchangeably by statisticians,54,56–58 and
although matrix variate analysis of stress tensors and multivariate
analysis of their components have been shown to be statistically
equivalent,45 difficulties associated with the application of matrix
variate statistics to matrices such as stress tensors dictate that stress
variability is better analysed in terms of tensor components in a mul-
tivariate manner.45 Some analyses in this vein can be found in the lit-
erature.14,15,42 As a result, it is reasonable to suggest that scalar-valued
dispersion measures defined in multivariate statistics may be applied to
the quantification of stress dispersion.

Three scalar-valued dispersion measures – total variation,47 gen-
eralised variance48 and effective variance49 – are widely used in mul-
tivariate statistics. All of these are based on the covariance matrix of a
collection of multivariate vectors. When applying multivariate
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dispersions to stress dispersion measure, two stress vectors need to be
considered – one containing the complete tensor (i.e. either 4 or 9
components, associated with two- or three-dimensional stress states,
respectively) and the other containing only the distinct tensor compo-
nents (i.e. 3 or 6 components for two- or three-dimensional stress states,
respectively). Based on the stress tensor S (Eq. (1)), these two vectors
are

= =

=

s Svec( ) [σ τ τ τ σ τ τ τ σ ]

[σ τ τ τ σ τ τ τ σ ]

x yx zx xy y zy xz yz z T

x xy xz yx y yz zx zy z T

c

(9)

and

= = =s Svech( ) [σ τ τ σ τ σ ] [σ τ τ σ τ σ ] .x yx zx y zy z T x xy xz y yz z T
d

(10)

Here, the subscripts “c” and “d” denote “complete” and “distinct”, re-
spectively, and ⋅[ ]T represents the matrix transpose. ⋅vec( ) is the vec-
torisation function that converts a tensor into a column vector by
stacking all columns together,59 and ⋅vech( ) is the half-vectorisation
function that stacks only the lower triangular (i.e. on and below the
diagonal) columns of a tensor into a column vector containing only the
distinct components.53(p.246)

For vector sc, containing all tensor components, the covariance
matrix is
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The total variation, which is the trace of the covariance matrix Σ, is thus

=V Σtr( ).t c (13)

Now, the duplicated rows and columns in Σ induced by the repeated
matrix components in the stress vector sc means that Σ has a determi-
nant of zero and hence is singular. The generalised variance and ef-
fective variance, which are related to the determinant of Σ (see Eqs.
(17) and (18) below), are therefore not defined for the complete stress
vector sc.

For the stress vector sd containing only the distinct tensor compo-
nents, its covariance matrix is
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Based on the covariance matrix Ω given in Eq. (14), the total variation,
generalised variance and effective variance are respectively given by
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where |·| denotes the matrix determinant and p =p( 2, 3) is the di-
mension of the stress tensor.

2.3. Relations between the stress dispersion measures

The above definitions demonstrate that the stress dispersion

measures depend on the variances of, and covariances between, the
stress tensor components. Using Eq. (6) to expand the Euclidean dis-
persion in Eq. (8), we obtain
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demonstrating that the square of the Euclidean dispersion is the sum of
the variances of all tensor components. Thus, we see that the measure
offered by Dyke et al.16 is in fact the Euclidean dispersion.

Since the leading diagonal of the covariance matrix Σ comprises the
variances of all the tensor components, we therefore find that Euclidean
dispersion and total variation of all tensor components are linked
through

= =D VΣtr( ) .E
2

t|c (20)

The total variation of distinct tensor components sd (Eq. (16)) is a
summation of the variances of only the distinct tensor components, i.e.

= + + + + + =V Ωvar(σ ) var(τ ) var(τ ) var(σ ) var(τ ) var(σ ) tr( ),x xy xz y yz zt d

(21)

and is thus different from the Euclidean dispersion.
The generalised variance and effective variance are only defined for

stress vectors containing distinct tensor components. The square of
Euclidean dispersion, total variation and effective variance all have the
same units as the variance of the tensor components, i.e. (stress)2 while
the generalised variance has the awkwardly large unit of (stress)12

Comparison between these scalar-valued stress dispersion measures
also indicates that the covariances between tensor components (i.e. the
off-diagonal components in the covariance matrix) are not considered
in Euclidean dispersion and total variation; this is in contrast to the
generalised and effective variances which consider not only the var-
iances of, but also the covariances between, the tensor components. The
effect of this on their capability for stress dispersion measure is dis-
cussed later.

3. Transformational invariance of the stress dispersion measures

To be meaningful, scalar-valued stress dispersion needs to be in-
variant with respect to coordinate transformation (i.e. independent of
the coordinate system). Here we examine the transformational in-
variance of the stress dispersion measures discussed above.

3.1. Transformational invariance of Euclidean dispersion and total
variation

As the Euclidean dispersion is based on the Euclidean distance be-
tween tensors, we examine Eq. (6) to consider the case when the stress
tensor S is subject to transformation represented by the transformation
matrix R, i.e.

′ = ⋅ ⋅S R S R .T (22)

Here, ′S denotes the stress tensor in a new coordinate system corre-
sponding to the transformation matrix R. For the Euclidean distance
between two transformed tensors we therefore have

′ ′ = ′ − ′ = − = −

= − ⋅ − = −

= − = − =

d

d

S S S S RS R RS R R S S R

R S S R R S S R R S S R

S S S S S S

( , ) ( )

tr( ( ) ( ) ) tr( ( ) )

tr(( ) ) ( , ).

T T T

T T T

2
1 2 1 2 F

2
1 2 F

2
1 2 F

2

1 2 1 2 1 2
2

1 2
2

1 2 F
2 2

1 2 (23)

This confirms the transformational invariance of Euclidean distance,
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and thus that of the Euclidean dispersion and the total variation of
complete tensor components. However, this invariance does not apply
to the total variation of the distinct tensor components, as is shown
later in the analysis of actual stress data.

3.2. Transformational invariance of generalised variance and effective
variance

As shown above, both generalised and effective variances are re-
lated to the determinant of the covariance matrix of distinct tensor
components, Ω . Therefore, provided transformational invariance of Ω
is satisfied, i.e. ′ =Ω Ω , transformational invariance of the general-
ised variance and effective variance are guaranteed. This invariance has
previously been derived analytically by Gao & Harrison.45 This deri-
vation makes use of a number of specialised matrix manipulations and
identities. To begin, it is necessary to write Eq. (14) in terms of sc in-
stead of sd. This is achieved by using the relation

= ⋅s B s ,p
T
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By this means, after lengthy matrix manipulation it is found that the
determinant of the covariance matrix of distinct components Ω and the
determinant of the covariance matrix of all components Σ are related
via45

= = ⋅− − +Ω B ΣB B ΣB2 ,p
T

p
p p

p p
( 1)1

2 (26)

where +Bp is the Moore-Penrose pseudoinverse of Bp,60(pp.36–38) i.e.
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2 (27)

and I is the identity matrix with dimensions of +p p( 1)1
2 .

Additionally, the determinant of the transformed covariance matrix
may be written as45

′ = ⋅ ⊗ ⋅ ⋅ ⊗ ⋅Ω B R R Σ R R B( ) ( ) ,p
T T T

p (28)

where ⊗ denotes the Kronecker product. Again, after lengthy manip-
ulation using a range of specialised matrix identities,45 Eq. (28) reduces
to

′ = ⋅− − +Ω B ΣB2 .p p
p p

( 1)1
2 (29)

Comparison of Eqs. (26) and (29) shows their right hand sides to be
identical, and thus

= ′Ω Ω . (30)

This confirms the transformational invariance of the determinant of
covariance matrix Ω, with the result that the generalised variance and
effective variance of distinct tensor components are independent of the
coordinate system. This allows these dispersion measures to be used in
any convenient coordinate system, and opens the way for them to be
used in a practical setting.

4. Application, comparison and discussion

To give a detailed application and examination of the proposed

scalar-valued stress dispersion measures, here we use both two- and
three-dimensional stress data to investigate their applicability and ef-
ficacy, as well as to confirm their transformational invariance.
Recommendations are given for use of the measures in practice.

4.1. Two-dimensional stress data application

We start with the analysis of two-dimensional stress data. Two
groups of synthetic stress data, each comprising 20 tensors, are ob-
tained by introducing random perturbations to a base stress tensor. The
perturbations are drawn from uniform distributions, the ranges of
which, together with the base stress tensor, are shown in Table 1. The
two generated synthetic stress data groups are shown in Table 2. As the
perturbations of group B are larger than those of group A, we might
expect group B to show larger dispersion than group A. This is sup-
ported by the Mohr's circles of the two stress groups shown in Fig. 3,
where data group A appears more concentrated than group B. Disper-
sions of the two stress data groups calculated using the measures in-
troduced above are tabulated in Table 3, and this shows all dispersions
of data group B to have larger values than those of data group A. This
suggests that for this case all the stress dispersion measures capture the
dispersion of the two data groups.

4.2. Three-dimensional stress data application

For three-dimensional stress data application, 17 actual in situ stress
data obtained at a depth of around 417m as part of the in situ stress
measurements made at the Atomic Energy of Canada Limited (AECL)’s
Underground Research Laboratory (URL) in south-eastern Manitoba,
Canada6 are used to verify the transformational invariance and per-
formance of the stress dispersion measures. Geomechanical research

Table 1
Base stress tensor and the perturbation ranges applied to the base stress tensor
components for Data group A and B.

Tensor components Base tensor components (MPa) Perturbation ranges

Group A Group B

σx 30.00 [−2,2] [−4,4]
τxy 5.00 [−1,1] [−2,2]
σy 15.00 [−2,2] [−4,4]

Table 2
Two synthetic stress data groups.

Data group A (MPa) Data group B (MPa)

σx τxy σy σx τxy σy

28.71 5.79 15.52 27.42 6.58 16.05
29.44 4.14 13.36 28.88 3.29 11.72
28.23 4.48 13.32 26.45 3.97 11.65
30.09 4.11 16.11 30.18 3.22 17.22
29.34 4.88 16.62 28.69 4.77 18.24
28.70 4.03 15.14 27.41 3.05 15.27
28.84 5.79 13.44 27.67 6.59 11.87
31.62 4.39 16.30 33.24 3.79 17.61
30.70 4.19 14.35 31.40 3.37 13.70
29.87 4.61 14.18 29.75 4.23 13.35
31.65 4.91 15.99 33.30 4.82 16.97
28.42 4.20 13.04 26.83 3.41 11.08
30.98 5.99 13.19 31.96 6.98 11.39
30.95 4.66 15.67 31.89 4.33 16.34
30.25 4.59 15.41 30.49 4.19 15.83
28.74 4.12 15.10 27.47 3.25 15.21
30.39 4.60 15.92 30.78 4.19 16.84
29.20 4.09 15.83 28.40 3.19 16.66
28.54 5.01 16.13 27.07 5.02 17.25
28.85 5.52 14.15 27.70 6.05 13.30
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was conducted at the AECL's URL during around 1982–2004 to assess
the feasibility of nuclear fuel waste disposal deep in a plutonic rock
mass.6,61 These 17 stress data are part of the 99 in situ stress mea-
surements presented in Martin,6 which were conducted at the AECL's
URL using the modified South African Council of Scientific and In-
dustrial Research (CSIR) triaxial strain cell.62 Here, these 17 actual
stress data are assumed to satisfy the above-mentioned assumptions and
only used for the purpose of demonstrating the applicability and effi-
cacy of the proposed approach from mathematical and statistical point
of view. The 17 actual stress data, transformed into the common co-
ordinate system of x East, y North and z vertically upwards, are pre-
sented in Table 4.

4.2.1. Transformational invariance of the proposed stress dispersion
measures

The mean tensor and covariance matrix of the 17 stress tensors in
Table 4 are calculated using Eqs. (2), (11) and (14). Referred to an x-y-z

coordinate system, these are respectively

= − −s [34.84 0.30 3.61 40.36 1.67 15.35] MPaT
d (31)

and

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢

−
− −
− − −

−

⎤

⎦

⎥
⎥
⎥
⎥
⎥

Ω

67.59 34.96 1.74 42.09 0.11 7.01
63.61 0.72 40.24 1.75 7.86

1.43 2.92 0.63 0.59
58.29 0.38 6.85

3.33 0.63
symmetric 4.13

MPa .2

(32)

To test the transformational invariance of the proposed stress dispersion
measures, another coordinate system (X-Y-Z), which is aligned with the
direction of the principal components of the mean stress tensor, is used.
The principal stress directions are the eigenvectors of the Euclidean
mean stress tensor, and are found to be

= ⎡

⎣
⎢

− −
− −
− −

⎤

⎦
⎥R

0.1037 0.9792 0.1743
0.9913 0.1160 0.0615
0.0805 0.1664 0.9828

,T

(33)

where the three column vectors correspond to the directions of σ1, σ2
and σ3, respectively, referred to the x-y-z frame.

After transforming the 17 stress data into the X-Y-Z system using Eq.
(22), the mean tensor and covariance matrix are found to be

′ =s [40.52 0 0 35.42 0 14.61] MPaT
d (34)

and

′ =

⎡

⎣

⎢
⎢
⎢
⎢
⎢

− − − − − ⎤

⎦

⎥
⎥
⎥
⎥
⎥

Ω

74.53 38.37 11.65 56.12 7.95 9.17
45.74 9.07 32.75 0.97 5.46

5.79 10.52 0.43 2.01
78.81 10.49 9.86

3.35 0.62
symmetric 3.67

MPa ,2

(35)

respectively.
The non-zero off-diagonal elements in both Eqs. (32) and (35) in-

dicate that the correlations between the various distinct stress tensor
components are not zero, i.e. the stress tensor components are not in-
dependent.20(p.73) This prompts us to suggest using the term “six dis-
tinct components” rather than “six independent components” to refer to
stress tensor components, in order to be statistically correct63(p.56) as
well as to avoid misinterpretations.38,45

All the proposed stress dispersion measures can be calculated using
the covariance matrices of the tensor components, i.e. Σ and Ω. The

Fig. 3. Mohr's circles of the two synthetic stress data groups.

Table 3
Scalar-valued stress dispersion measures of the two synthetic stress data groups.

Dispersions Data group A Data group B

DE
2a 3.22MPa2 12.89MPa2

Vt c
b 3.22MPa2 12.89MPa2

Vt d 2.85MPa2 11.41MPa2

Vg d 0.49MPa6 31.38MPa6

Ve d 0.79MPa2 3.15MPa2

a Calculated using Eq. (8).
b Calculated using Eq. (13).

Table 4
In situ stress tensor components in the x-y-z coordinate system (data from
Martin6).

Depth (m) Stress tensor components (MPa)

σx τxy τxz σy τyz σz

416.55 43.25 4.67 −3.44 32.67 −0.34 15.35
416.57 41.20 6.59 −3.32 31.30 0.46 17.69
416.60 42.92 8.80 −3.97 35.83 2.83 14.57
416.62 45.11 5.42 −4.44 31.59 2.29 18.34
416.68 42.57 4.36 −1.93 28.27 0.85 15.13
416.69 53.78 5.26 −2.26 31.51 3.62 17.61
416.70 26.05 −7.48 −2.57 38.40 1.74 12.35
416.71 28.85 −12.01 −5.65 45.40 6.71 16.29
416.73 30.96 −9.73 −3.86 42.67 0.45 14.56
416.77 23.88 −9.88 −3.70 51.36 1.09 15.19
416.79 34.97 −14.97 −4.51 57.51 1.80 11.74
416.81 27.89 −10.89 −1.60 44.53 −0.24 14.22
417.17 33.78 6.06 −2.19 46.27 0.19 14.59
417.17 33.09 6.35 −5.77 45.00 0.10 18.15
417.17 26.07 4.60 −3.30 42.37 3.14 12.69
417.17 28.18 4.70 −3.89 40.82 3.72 18.25
417.17 29.73 3.00 −4.92 40.55 −0.08 14.22
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measures obtained using the covariance matrices associated with the x-
y-z and X-Y-Z coordinate systems are shown in Table 5, and demon-
strates that Euclidean dispersion, total variation of complete tensor
components, generalised variance and effective variance display
transformational invariance. Total variation of distinct tensor compo-
nents does not display this invariance, and thus is not recommended for
practical use. Additional calculations using different coordinate sys-
tems, but not presented here for the sake of brevity, support this
finding. As a result, it appears that Euclidean dispersion, total variation
of complete tensor components, generalised variance and effective
variance, can quantify stress dispersion in any convenient coordinate
system and are therefore suitable for general use.

4.2.2. Efficacy of the stress dispersion measures
The generally applicable stress dispersion measures fall into two

categories: those – such as Euclidean dispersion and total variation –
that are based on the trace of the covariance matrix of complete tensor
components, Σtr( ), and those – such as generalised variance and ef-
fective variance – that are based on the determinant of the covariance

matrix of the distinct tensor components, Ω . As noted above, the
former only consider the variances of tensor components, while the
latter also consider the covariances between tensor components. One
approach to examining the effect of this difference on the efficacy of
these measures is to generate appropriate random stress tensors, eval-
uate the various dispersion measures and then compare these to the
distributions of the principal stress magnitudes and orientations.

Random stress tensors can be generated in a multivariate manner
using the mean tensor and the covariance matrix of the distinct tensor
components as inputs, an approach we have described previously.38

This earlier work used the AECL data described above to generate two
groups of random tensors using the mean vector given in Eq. (31) but
different covariance matrices. These generated data are used here to
test the various dispersion measures.

The first group of random tensors are generated using the covar-
iance matrix of the 17 actual stress data referred to the x-y-z coordinate
system, i.e. Eq. (32), while the second group uses this same matrix but
with zero off-diagonal elements, i.e.

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

Ω

67.59 0 0 0 0 0
63.61 0 0 0 0

1.43 0 0 0
58.29 0 0

3.33 0
symmetric 4.13

MPa .II
2

(36)

Thus, both stress groups have the same Euclidean dispersion and total
variation (266.77MPa2), but different generalised and effective var-
iance: for the first group these are 6.57×105 MPa12 and 9.33MPa2,
respectively, while for the second group they are 4.94× 106 MPa12 and
13.05MPa2. These figures indicate that the dispersion of the second
group is larger than that of the first, and thus we would expect the

Table 5
Stress dispersion measures of actual stress data in x-y-z and X-Y-Z coordinate
systems.

Dispersions Coordinate systems

x-y-z X-Y-Z

DE
2, Vt c 266.77MPa2 266.77MPa2

Vt d 198.39MPa2 211.89MPa2

Vg d 6.57× 105 MPa12 6.57× 105 MPa12

Ve d 9.33MPa2 9.33MPa2

Fig. 4. Distributions of principal stress magnitudes and hemispherical projections of principal stress orientations of two groups of random tensors (for clarity the
projections show a random selection of only 500 generated tensors, and have been rotated to place the mean at the centre of the projection and the other two
principal stress directions at the N-S and E-W positions) (after Gao & Harrison38).
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second group to display larger variation in terms of principal stress
magnitudes and orientations than does the first.

The variability of principal stress magnitudes and orientations was
investigated in our earlier work38 by generating 5×106 random ten-
sors for each group as an accurate representation of the population.
From these random tensors the probability density and cumulative
distributions of the generated principal stresses were determined, and
equal angle lower hemispherical projections of the principal directions
of a randomly drawn subset of 500 tensors plotted (Fig. 4a-c and
Fig. 4d-f, respectively). This smaller number of vectors has been used
for clarity; note that the angular differences between the mean principal
directions of the 500 tensors and the population are practically insig-
nificant, as shown in Table 6.

As Fig. 4 shows, the distributions of the magnitudes of σ1 and σ2, and
the orientations of σ2 and σ3 of the first group (i.e. non-zero covariance)
appear more concentrated than those associated with the second group
(i.e. zero covariance), with the distributions of the magnitude of σ3 and
orientation of σ1 being approximately the same for both groups. Ig-
noring the covariance (i.e. group 2) therefore appears to give greater
dispersion than if covariance is correctly included. By extension, dis-
persion measures that ignore covariance will not correctly account for
the dispersion of the data.

This demonstrates that, by ignoring the covariances between tensor
components, Euclidean dispersion and total variation do not capture
the full stress dispersion. Consequently, we suggest that generalised
variance and effective variance are the more effective in assessing stress
dispersion. Furthermore, since effective variance has a relatively small
magnitude and also a more appreciable unit (the same as the variance
of tensor components, i.e. stress squared), we recommend this for
practical use.

Effectively, this analysis compares two groups of in situ stress data
that have the same Euclidean mean but different variability. As the
effective variance is different for the two groups, we suggest this
measure will be efficacious for making inter-site comparisons of in situ
stress variability.

4.2.3. Influence of tensor component sequence on stress dispersion measure
The sequence of the distinct tensor components used above is that

generated by the ⋅vech( ) function in Eq. (10). If the sequence is changed
to

=s [τ τ τ σ σ σ ] ,xy xz yz x y z T
d (37)

and the 17 actual stress data shown in Table 4 reanalysed, the resulting
covariance matrix is

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢

− −
− − −

−
−

⎤

⎦

⎥
⎥
⎥
⎥
⎥

Ω

63.61 0.72 1.75 34.96 40.24 7.86
1.43 0.63 1.74 2.92 0.59

3.33 0.11 0.38 0.63
67.59 42.09 7.01

58.29 6.85
symmetric 4.13

MPa .III
2

(38)

Comparing Eqs. (32)–(38) shows that the elements of the covariance
matrices are identical, although in a different sequence. The effective
variance calculated based on this new covariance matrix is 9.33MPa2,
which is the same that obtained with the original sequence (Table 5).
Thus, the sequence of stress tensor components is seen to have no effect
on the effective variance, and hence stress dispersion quantification can

be conducted using any convenient sequence of distinct tensor com-
ponents.

5. Conclusions and further comments

By improving on the existing related working in rock mechanics, we
have presented and examined several stress dispersion quantification
approaches – Euclidean dispersion, total variation, generalised variance
and effective variance – to provide scalar-valued measures of the
overall stress variability based on the stress tensors referred to a
common Cartesian coordinate system.

Comparison between these stress dispersion measures demonstrates
that the Euclidean dispersion and total variation of complete tensor
components are identical and equal to the sum of the variances of all
tensor components, while the generalised variance and effective var-
iance are only defined for distinct tensor components and both are re-
lated to the determinant of their covariance matrix.

We have examined analytically the transformational invariance of
the stress dispersion measures. Euclidean dispersion, total variation of
complete tensor components, generalised variance and effective var-
iance of distinct tensor components are seen to be independent of the
coordinate system, but total variation of distinct tensor components is
coordinate system dependent and is therefore not suitable for practical
use. Analysis of actual stress data confirms these results.

Testing of the efficacy of the stress dispersion measures using ran-
domly generated stress data demonstrates that for different stress
groups which have the same Euclidean dispersion and total variation,
they may have different overall dispersions. This is because the
Euclidean dispersion and total variation do not account for the covar-
iances between tensor components, and thus the Euclidean dispersion
and total variation do not fully capture the overall stress dispersion.
This is in contrast to the generalised variance and effective variance,
both of which consider the variances of and covariances between tensor
components and hence are more effective measures of stress dispersion.
Finally, since effective variance has a relatively small magnitude and
familiar units of stress squared, it is more convenient and thus re-
commended for engineering application.

We suggest that the recommended scalar-valued stress dispersion
measure – effective variance – may not only assist in stress variability
characterisation, but also facilitate the quantitative comparison of the
variability of stress under different scenarios, such as those obtained
from different engineering sites.

However, as mentioned earlier, the effective variance is applicable
in situations where the stress data are complete, practically accurate
and obtained using the same approach within a short space and time
span. While since stress measurement methods involve perturbation of
a particular volume of rock, and the volume involved for different
methods may differ by several orders of magnitude. For example, the
earthquake focal mechanism method may involve a rock volume of 109

m3. Hydraulic fracturing method involves somewhat smaller rock vo-
lumes (0.5–50m3), but still larger than those associated with over-
coring techniques (10−3–10−2 m3).1 How the stress data obtained by
different approaches can be processed together in a statistical manner is
a significant challenge in stress variability analyses. In addition, the
spatial and temporal variability may be an intrinsic feature of stress.
Currently, the proposed approach is incapable of capturing spatial and
temporal variability of stress. Geostatistics, which is a branch of sta-
tistics focusing on spatial or spatiotemporal datasets, may provide a
potential solution to this problem.64 All these problems are worth fu-
ture attentions of the rock mechanics community. Nevertheless, the
proposed scalar-valued measures of stress dispersion, together with
other tensor-based stress variability characterisation approaches we
have developed earlier,38,44–46,50,51 may provide a quantitative and
precise assistance to solve these problems.

Table 6
Angular differences between the mean principal directions of the 500-tensor
subset and the population for the two groups of generated stress data (from Gao
& Harrison38).

σ1 (°) σ2 (°) σ3 (°)

Group 1: covariance matrix of Eq. (32) 1.2 1.2 0.3
Group 2: covariance matrix of Eq. (36) 1.2 1.1 0.4
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