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A B S T R A C T

In situ stress is an important parameter in rock mechanics, but localised measurements of stress often display
significant variability. For improved understanding of in situ matrices that satisfy both Eq. stress it is important
that this variability be correctly characterised, and for this a robust statistical distribution model – one that is
faithful to the tensorial nature of stress – is essential. Currently, variability in stress measurements is customarily
characterised using separate scalar and vector distributions for principal stress magnitude and orientation re-
spectively. These customary scalar/vector approaches, which violate the tensorial nature of stress, together with
other quasi-tensorial applications found in the literature that consider the tensor components as statistically
independent variables, may yield biased results. To overcome this, we propose using a multivariate distribution
model of distinct tensor components to characterise the variability of stress tensors referred to a common
Cartesian coordinate system. We discuss why stress tensor variability can be sufficiently and appropriately
characterised by its distinct tensor components in a multivariate manner, and demonstrate that the proposed
statistical model gives consistent results under coordinate system transformation. Transformational invariance of
the probability density function (PDF) is also demonstrated, and shows that stress state probability is in-
dependent of the coordinate system. Thus, stress variability can be characterised in any convenient coordinate
system. Finally, actual in situ stress results are used to confirm the multivariate characteristics of stress data and
the derived properties of the proposed multivariate distribution model, as well as to demonstrate how the quasi-
tensorial approach may give biased results. The proposed statistical distribution model not only provides a
robust approach to characterising the variability of stress in fractured rock mass, but is also expected to be useful
in risk- and reliability-based rock engineering design.

1. Introduction

In situ stress is an important parameter in many aspects of rock
mechanics, including hydraulic fracturing propagation, rock mass per-
meability analysis and earthquake potential evaluation.1–5 Because of
the inherent complexity of fractured rock masses in terms of varying
rock properties and the presence of discontinuities, in situ stress in rock
often displays significant variability.4,6–8 Also, with the increasingly
widespread application of probabilistic or reliability-based design in
rock engineering,9–14 robustly incorporating stress variability in these
analyses is becoming a necessity and for this a statistical distribution
model is a prerequisite. However, stress is a second order tensor, and it
appears that a robust statistical distribution model that characterises
the variability of stress data – one that is faithful to the tensorial nature
of stress – is not available. To address this deficiency, and to assist
probabilistic-related analyses that need to consider the inherent varia-
bility of in situ stress, we propose using a multivariate distribution
model for stress variability characterisation.

Currently in rock mechanics, stress magnitude and orientation are
customarily processed separately (e.g. Fig. 1). This effectively decom-
poses the stress tensor into scalar (principal stress magnitudes) and
vector (principal stress orientations) components, to which non-tensor
related approaches such as classical statistics15 and directional statis-
tics,16 respectively, are applied.6,9,17–32 However, such applications
imply a statistical distribution model that is an ad hoc combination of
distributions of scalars and vectors, and therefore in general are erro-
neously applying statistical tools to process data that are referred to
different geometrical bases. They thus violate the tensorial nature of
stress, and as a result may yield biased results.33–40 Additionally, these
non-tensor related statistical models render it difficult to incorporate
stress variability into reliability-based geotechnical engineering design
codes such as Eurocode 7.41

As an alternative to the separate analysis of principal stress mag-
nitude and orientation, and to be faithful to the tensorial nature of
stress, analyses of stress variability should be conducted on the basis of
stress tensors referred to a common Cartesian coordinate system.34,38–40
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Several researchers have followed this technique when calculating the
mean36,42–45 and variance36,43,45,46 of stress tensors, as well as for
random stress tensor generations.43,46,47 However, in this previous
work the stress tensor components are treated as statistically in-
dependent variables, which implies an underlying statistical distribu-
tion model that is a combination of several independent univariate
distributions in which the effect of correlation between tensor compo-
nents is ignored.39 As with earlier non-tensorial customary scalar/
vector approaches, these quasi-tensorial applications may also yield
unreasonable results. We have previously discussed the inappropriate-
ness of customary scalar/vector and quasi-tensorial approaches for
stress variability characterisation.38–40

In order to improve on these oversimplified statistical distribution
models, some work has attempted to apply multivariate statistics to
analyses of stress variability.36,48,49 However, multivariate statistics is
generally only suitable for vector data, not tensors.50 We therefore
suggest that these previous applications of multivariate techniques have
taken place in an empirical setting, in that the applicability of multi-
variate statistics to stress variability analysis has not been formally
demonstrated. Thus, to date there seems to have been no

mathematically rigorous proposal for, and systematic analysis of, a
statistical distribution model for stress variability characterisation in
rock mechanics. The principal aim of this article is to provide this
formal framework.

Stress tensors, which are 2 × 2 or 3 × 3 symmetric matrices, to-
gether with other matrix-valued quantities, play a pivotal role in many
subjects such as solid mechanics, physics, earth science, medical ima-
ging and economics.51 To explicitly account for the inherent variability
of such matrix-valued quantities, matrix variate statistics – as a gen-
eralisation of multivariate statistics – has been developed.51 Although
this has been demonstrated to be appropriate for stress variability
analysis,52 application of it is not straightforward and some essential
components remain to be developed.53,54 Fortunately, the statistical
equivalence between matrix variate and multivariate statistics implies
that, for stress variability analysis, multivariate statistics can be used in
certain circumstances as an easily-applicable alternative to matrix
variate statistics. Indeed, matrix variate statistics and multivariate
statistics are occasionally used interchangeably.51,54–56

Among many statistical distributions, the normal distribution is
particularly important as physical observations are often seen to be
approximately normally distributed.51 Thus, to provide an easily ap-
plicable approach, and as an extension of our previous work,33,52 here,
based on matrix variate statistics and using the normal distribution as
an example, a multivariate distribution model for characterising the
variability of stress tensors obtained in a common Cartesian coordinate
system is presented and examined systematically. We also derive the
reason why stress tensor variability can be adequately represented by
variability of distinct tensor components in a multivariate manner.

In the present paper, the multivariate distribution model of com-
plete tensor components is presented first, and difficulties faced in
application to the analysis of stress variability discussed. To overcome
these difficulties the multivariate distribution of distinct tensor com-
ponents is introduced. We then analytically demonstrate the transfor-
mational consistency and invariance of this statistical distribution
model in terms of mean, covariance matrix and probability density
function (PDF). Finally, using actual in situ stress data, the multivariate
characteristics of stress data is confirmed and inappropriateness of a
quasi-tensorial distribution model discussed. Some relevant contents
and derivations are shown in the Appendices. The notation adopted
here generally follows the convention of bold uppercase, bold lower-
case and normal lowercase letters denoting matrix, vector and scalar,
respectively, unless otherwise noted.

2. Multivariate distribution model

Generally, a tensor is a quantity that can be represented by an or-
ganised array of numerical values. The order of a tensor is the dimen-
sion of the array needed to represent it, or equivalently the number of
indices needed to label a component of that array. Thus, scalars, being
single numbers, are zero order tensors, and vectors, being one-dimen-
sional arrays, are tensors of the first order. Stress tensors are re-
presented by 2 × 2 or 3 × 3 two-dimensional arrays, and therefore are
second order. Unless otherwise noted, here the term “tensor” is speci-
fically used to denote a symmetric 2 × 2 or 3 × 3 second order tensor.
As stress is a second order tensor, the explicit and intuitive approach to
characterise stress variability is to use a matrix variate distribution, as
these characterise the variability of matrices by considering each matrix
as a single entity.51 However, current limitations of and application
difficulties associated with matrix variate statistics require the more
applicable approach of multivariate statistics to be used, as the two
techniques can be shown to be equivalent.51

Here, we first introduce the matrix variate normal distribution to
demonstrate the equivalence between the matrix variate statistics of a
stress tensor and the multivariate statistics of the complete tensor
components. Then, by making use the symmetric structure of the stress
tensor and to avoid the singularity caused by repeated rows and

(a) Distribution of principal stress magnitudes
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Fig. 1. Customary analyses of stress processes principal stress magnitude and orientation
separately using classical statistics and directional statistics, respectively (after Brady &
Brown31).
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columns in the covariance matrix of complete tensor components, we
apply the symmetric matrix variate normal distribution in order to
simplify the multivariate distribution model into a distribution of only
the distinct tensor components.

2.1. Multivariate normal distribution of all tensor components

Matrix variate statistics has been developed to explicitly quantify
the inherent variability of matrix-valued quantities. Of the many matrix
variate distributions available, the matrix variate normal distribution is
the most widely used.51 A detailed description of this matrix variate
normal distribution and its parameter estimation are presented in
Appendix A. As this Appendix shows, the PDF of this distribution
is51(p.55)

= ⎛
⎝

− − − ⎞
⎠

− −f X
Σ

U X M V X M( ) 1
(2π)

etr 1
2

( ) ( ) ,
pq

T1 1

(1)

where U and V result from separating the covariance matrix Σ using the
decomposition

= ⊗Σ U V, (2)

and ⊗ denotes the Kronecker product.57

Unfortunately, separability of covariance matrices cannot be easily
satisfied since it imposes a number of strict and difficult to meet con-
straints on the variances of, and correlations between, the observed
variables.53 Additionally, a separability test must be conducted for each
specific data group as separability depends on the matrix-valued data
themselves,53,58,59 and such tests are not yet generally available.53,58–60

To compound matters, the components U and V cannot be explicitly
calculated and numerical iterative approaches have to be employed to
determine them.54 All these factors significantly limit the distribution's
application to stress variability characterisation, and thus it is appro-
priate to investigate the applicability of multivariate statistics to the
problem.

Matrix variate statistics and multivariate statistics are seen to be
used interchangeably,51,54–56 and the matrix variate normal and mul-
tivariate normal distributions are known to be statistically equivalent
even though they appear dissimilar in terms of covariance matrix and
PDF.51,52 Indeed, the PDF of the matrix variate normal distribution
shown in Eq. (1) is equivalent to that of the multivariate normal dis-
tribution of all matrix components 51 (p.56),55, which is

= ⎛
⎝

− − ⋅ ⋅ − ⎞
⎠

−f x
Σ

x m Σ x m( ) 1
(2π)

exp 1
2

( ) ( ) ( ) ,
pq

T 1

(3)

where the maximum likelihood estimation (MLE) of the mean vector m
is

∑= = =
=n

m x x Xˆ 1 vec( ),
i

n

i
T

1 (4)

and the covariance matrix can be estimated by Eq. (A.10), i.e.

∑= = − ⋅ −
=n

Σ x x x x xˆ cov( ) 1 ( ) ( ) .
i

n

i i
T

1 (5)

Thus, for a stress tensor, to avoid the limitations and application dif-
ficulties of the matrix variate normal distribution identified above, a
multivariate normal distribution of all matrix components can be used
instead. However, symmetric matrices such as stress tensors lead to
duplicated rows and columns in the covariance matrix, and the re-
sulting singularity of this matrix precludes use of Eq. (3). To overcome
this problem, we propose using a multivariate distribution of the dis-
tinct tensor components, the derivation of which is presented next.

2.2. Multivariate normal distribution of distinct tensor components

The multivariate normal distribution of distinct tensor components

is the multivariate analogue of the symmetric matrix variate normal
distribution. Details of this matrix distribution are presented in
Appendix B, and its suitability for characterising the variability of stress
tensors has been demonstrated previously.52

As with the matrix variate normal distribution, the symmetric ma-
trix variate normal distribution requires separability of the covariance
matrix Σ, i.e. = ⊗Σ U V, and as noted above this renders calculation of
the PDF difficult. However, the PDF of the symmetric matrix variate
normal distribution (Eq. (B.10)) is known to be equivalent to the PDF of
the multivariate normal distribution of distinct tensor components sd
(Eqs. 2.5.6-2.5.8 in Gupta & Nagar 51(p.70), which is

= ⎛
⎝

− − ⋅ ⋅ − ⎞
⎠+

−f s
Ω

s m Ω s m( ) 1

(2π)
exp 1

2
( ) ( ) ( ) ,d

p p
d d

T
d d

( 1)

1
1
2 (6)

where the MLE of the mean vector md is

∑= = =
=n

m s s Sˆ 1 vech( ),d
i

n

d d
1

i
(7)

and the covariance matrix can be estimated (see Eq. (B.12)) as

∑= = − ⋅ −
=n

Ω s s s s sˆ cov( ) 1 ( ) ( ) .d
i

n

d d d d
T

1 (8)

This equivalence means that the variability of symmetric matrix-valued
data can be appropriately and adequately represented by the multi-
variate distribution of the distinct components.

A benefit of only considering the distinct components is that the
minimum sample size required for MLE of the covariance matrix Ω is
reduced from +p( 1)2 to + +( )p p( 1) 11

2 . For example, for three-di-
mensional stress tensors and when considering all nine tensor compo-
nents, the minimum sample size required is 10, but when only the six
distinct components are considered the sample size is reduced to 7.
Although this is a small reduction, it is helpful for rock stress analysis
since in situ stress measurements are difficult and hence expensive to
perform, with the result that most rock engineering projects usually do
not have the luxury of large samples. Thus, when the sample size

> +n p p( 1)1
2 , the multivariate distribution of distinct tensor compo-

nents can be used to characterise the stress variability. For the case of
≤ +n p p( 1)1

2 , and once an appropriate covariance matrix separability
test for symmetric matrices has been developed, it will be possible to
employ the symmetric matrix variate distribution with a separable
covariance matrix.

In the above analyses, the stress vector sd containing the distinct
tensor components obtained by function Svech( ) (see Appendix B) has
the component sequence shown in Eq. (B.2), i.e.

=s [σ τ τ σ τ σ ]d x xy xz y yz z T (9)

and all subsequent multivariate analyses presented here use this se-
quence. In fact, and as will be demonstrated below using actual stress
data, the component sequence has no effect on the characteristics (e.g.
the determinant) of the covariance matrix Ω, and thus does not influ-
ence the PDF of Eq. (6). Therefore, any convenient sequence of the
distinct tensor components can be used when characterising stress
variability using multivariate statistics in engineering applications.

3. Transformational consistency and invariance of multivariate
normal distribution

It is well known that, for any given stress state, the magnitudes of
the components of a stress tensor are dependent on the coordinate
system in use. By extension, and recognising that it is common for many
different coordinate systems to be in use when characterising stress
variability,61 it is critical that the PDF and parameters such as the mean
and covariance matrix display transformational consistency and in-
variance. Here the transformational consistency is defined such that a

K. Gao, J.P. Harrison International Journal of Rock Mechanics and Mining Sciences 102 (2018) 144–154

146



quantity obtained in one coordinate system can be linked to the one
obtained in another system by the transformation matrix, and the
transformational invariance means that no matter which coordinate
system in use, the quantity always has the identical results. It is known
that the mean and covariance matrix of the symmetric matrix variate
normal distribution subjected to a general transformation are consistent
(p.73, Gupta & Nagar51), and here we demonstrate both the consistency
and invariance for the multivariate normal distribution of the distinct
components subject to the transformation

′ =S RSR ,T (10)

where R denotes a ×p p orthogonal transformation matrix. This is the
customary stress transformation equations, relating a stress tensor S in
one Cartesian coordinate system to a tensor ′S in another system.61

When S follows the symmetric matrix variate normal distribution in
one coordinate system, the transformed tensor ′S will also follow the
symmetric matrix variate normal distribution and can be denoted
as51(p.73)

′ ′ ′SNS M Ω~ ( , ),p p, (11)

where the mean stress tensor is

′ =M RMRT (12)

and the covariance matrix is

′ = ′Ω B Σ B .p
T

p (13)

Here Bp is the “transition matrix” defined in Appendix B, and ′Σ is the
covariance matrix of all transformed tensor components, which in de-
composed matrix form is51(p.73)

′ = ′ ⊗ ′Σ U V , (14)

where

′ =U RURT (15)

and

′ =V RVR .T (16)

Therefore, the transformed covariance matrices Σ and Ω are

′ = ′ ⊗ ′ = ⊗Σ U V RUR RVR( ) ( )T T (17)

and

′ = ⋅ ⊗ ⋅Ω B RUR RVR B(( ) ( )) ,p
T T T

p (18)

respectively.
Based on Eq. (11) and the definition of the symmetric matrix variate

normal distribution, the transformed distinct tensor components
′ = ′s Svech( )d will follow a multivariate normal distribution with the
mean vector

′ = ′ =m M RMRvech( ) vech( ).d
T (19)

Now, for the four general matrices A, C, P and Q, if the matrix products
AP and CQ exist then the following identity holds57(p.32):

⊗ = ⊗ ⋅ ⊗AP CQ A C P Q( ) ( ) ( ) ( ). (20)

Using this identity the covariance matrix ′Σ in Eq. (17) may be changed
to a version that does not require its decomposition:

′ = ′ ⊗ ′ = ⊗
= ⊗ ⋅ ⊗
= ⊗ ⋅ ⊗ ⋅ ⊗
= ⊗ ⋅ ⋅ ⊗

Σ U V RUR RVR
R R UR VR
R R U V R R
R R Σ R R

( ) ( )
( ) (( ) ( ))
( ) ( ) ( )
( ) ( ).

T T

T T

T T

T T (21)

Thus, the transformed covariance matrix ′Ω of the distinct components
in terms of the original covariance matrix Ω is

′ = ′ = ⋅ ⊗ ⋅ ⋅ ⊗ ⋅Ω B Σ B B R R Σ R R B( ) ( ) .p
T

p p
T T T

p (22)

The multivariate PDF of the transformed distinct tensor components

can be written as

′ =
′

⎛
⎝

− ′ − ′ ⋅ ′ ⋅ ′ − ′ ⎞
⎠+

−f s
Ω

s m Ω s m( ) 1

(2π)
exp 1

2
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p p
d d

T
d d

( 1)

1
1
2

(23)

However, since

− ⋅ ⋅ −
= − ⋅ ⊗ ⋅ −
= − ⋅ ⊗ ⋅ −
= − −

−

+ − +

−

− −

s m Ω s m
S M B U V B S M

S M U V S M
U S M V S M

( ) ( ) ( )
(vech( )) ( ) ( ) vech( ),
(vec( )) ( ) vec( )
tr( ( ) ( ))

d d
T

d d
T

p p
T

T

1

1

1

1 1 (24)

(Eqs. 2.5.6–2.5.8 in Gupta & Nagar51(p.71)), the argument to the ⋅exp( )
function in Eq. (23) can be changed to

′ − ′ ⋅ ′ ⋅ ′ − ′ = ′ ′ − ′ ′ ′ − ′− − −s m Ω s m U S M V S M( ) ( ) ( ) tr(( ) ( )( ) ( )).d d
T

d d
1 1 1

(25)

The invariance of this expression can be demonstrated as follows. For
non-singular matrices P and Q of the same size we have

=− − −PQ Q P( ) ,1 1 1 (26)

and for an orthogonal matrix R

= −R R .T 1 (27)

Using these, the right hand side of Eq. (25) can be written in terms of S,
M, U and V thus:

′ ′ − ′ ′ ′ − ′
= ⋅ − ⋅ ⋅ −
= ⋅ − ⋅ ⋅ −
= ⋅ − − ⋅
= − −

− −

− −

− −

− −

− −

U S M V S M
RUR R S M R RVR R S M R
RU R R S M R RV R R S M R

R U S M V S M R
U S M V S M

tr(( ) ( )( ) ( ))
tr(( ) ( ( ) ) ( ) ( ( ) ))
tr(( ) ( ( ) ) ( ) ( ( ) ))
tr( ( ) ( ) )
tr( ( ) ( ))

.

T T T T

T T T T

T

1 1

1 1

1 1

1 1

1 1 (28)

Hence, using Eqs. (24), (25) and (28), the transformational invariance
of the argument to the ⋅exp( ) function in Eq. (23) is confirmed:

′ − ′ ⋅ ′ ⋅ ′ − ′
= ′ ′ − ′ ′ ′ − ′
= − −
= − ⋅ ⋅ −

−

− −

− −

−

s m Ω s m
U S M V S M

U S M V S M
s m Ω s m

( ) ( ) ( )
tr(( ) ( )( ) ( ))
tr( ( ) ( ))
( ) ( ) ( )

.

d d
T

d d

d d
T

d d

1

1 1

1 1

1 (29)

In addition, we have analytically derived in Appendix C the trans-
formational invariance of the determinant of the covariance matrix Ω,
i.e.

= ′Ω Ω . (30)

This transformational invariance of the determinant of the covariance
matrix Ω, together with Eq. (29), gives the transformational invariance
of the PDF of the multivariate normal distribution of distinct tensor
components (Eq. (6)):

− − ⋅ ⋅ −

= − ′ − ′ ⋅ ′ ⋅ ′ − ′

−

′

−

+

+

( )
( )

s m Ω s m

s m Ω s m

exp ( ) ( ) ( )

exp ( ) ( ) ( )

d d
T

d d

d d
T

d d

Ω

Ω

1

(2π)

1
2

1

1

(2π)

1
2

1

p p

p p

1
2 ( 1)

1
2 ( 1) (31)

Thus, it is seen that the PDF of distinct tensor components is in-
dependent of the coordinate system, and therefore characterisation of
stress variability can be conducted in any convenient Cartesian co-
ordinate system. This transformational invariance also demonstrates
that the probability associated with a particular stress state is in-
dependent of the coordinate system, as would be expected when it is
remembered that a stress state is a coordinate system independent point
property.

4. Application to actual in situ stress data

The above analyses present a multivariate distribution model of
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distinct tensor components to characterise stress variability that is su-
perior to the existing quasi-tensorial applications which consider tensor
components as independent quantities. These analyses also give theo-
retical support to the few existing multivariate analyses of stress seen in
the literature.36,48,49 Here, to give an application of the proposed
multivariate distribution model, 17 actual in situ stress data obtained on
the 420 Level of the Atomic Energy of Canada Limited (AECL)’s Un-
derground Research Laboratory (URL) in south-eastern Manitoba, Ca-
nada are analysed.6 Geomechanics research was conducted at the AE-
CL's URL during the period of about 1982 – 2004 to assess the feasibility
of deep disposal of nuclear fuel waste in a plutonic rock mass.6,62 These
17 stress data are part of the 99 in situ stress measurements presented by
Martin,6 which were made using a modified CSIR triaxial strain cell,63

and are used here for the purpose of demonstrating the applicability
and efficacy of the proposed statistical distribution model for stress
variability characterisation from the mathematical and statistical points
of view, rather than interpreting the stress conditions at the site. The 17
stress data were originally presented in the form of principal stress
magnitudes and orientations. To allow the current application, we use
Eq. (10) to transform these data into stress tensors referred to the
common coordinate system of x East, y North and z vertically upwards.
The components of the transformation matrix corresponding to each
stress are the direction cosines of the principal stress orientations re-
lative to the x, y and z directions. The distinct tensor components of the
17 stress tensors are shown in Table 1.

In what follows, the statistical dependence between distinct stress
tensor components is firstly examined in terms of the correlation ma-
trix. Following this, parameter estimates are obtained and transforma-
tional consistency of the proposed model verified. Finally, the effect of
tensor component sequence on stress variability analysis is tested.

4.1. Statistical dependence between distinct stress tensor components

The statistical relationship between variables is formally de-
termined by calculating their correlation coefficient, which for two
variables x and y is50(p.65)

=
⋅
x y

x y
ρ cov( , )

var( ) var( )
,

(32)

where ⋅var( ) denotes the variance function. The correlation ma-
trix50(p.65) of the six distinct tensor components of the stress data in
Table 1 is presented in Table 2. When the correlation coefficient is close

to zero there is no evidence of any relationship, i.e. the variates are
independent. Thus, here only the relationships between σx and τyz
( =ρ 0.01), and σy and τyz ( =ρ 0.03) can be practically considered as
independent, with the remaining pairs of stress components demon-
strating some degree of dependence. The geological reasons for these
dependencies is not known, nor is whether such dependencies exist in
all fractured rock masses; we suggest these are subjects that warrant
further investigation by the rock mechanics community.

To examine the significance of the correlation coefficients we use
the null hypothesis that two tensor components are unrelated,64 and
test this using p-values. The p-values for each pair of tensor components
of the stress data in Table 1 are tabulated in Table 3. Mathematical
software packages such as MATLAB,65 GNU Octave66 and Excel's re-
gression tool have functions to calculate the p-value, and in general
values smaller than 0.05 can be deemed as significant. Thus, from
Table 3 we observe that σx and τxy, σx and σy, σy and τxy, and σz and τxy
are highly dependent. The first three of these have the greatest sig-
nificance, and are between the stress components in the xy (i.e. hor-
izontal) plane; we surmise that this is indicative of a systematic varia-
tion in the state of stress in this plane.

The non-zero correlation coefficients shown in Table 2 and the p-
values presented in Table 3 demonstrate statistical dependence between
distinct stress tensor components. As a result, simply treating all tensor
components as independent quantities and using a collection of in-
dependent univariate distributions as a statistical distribution model in
stress variability related analyses36,43,45–47 is incorrect. Therefore, the
proposed multivariate distribution model, which considers both the
variances of and the correlations between tensor components, is more
appropriate for characterising stress variability. Indeed, this observa-
tion prompts us to suggest that the term “six independent components”,
which is customarily used in rock mechanics to describe the stress
tensor, should be replaced by “six distinct components” in order to both
be statistically correct67(p.56) and avoid misinterpretations.39

4.2. Parameter estimations and their transformational consistency

For the data of Table 1, the MLE of the mean stress tensor (Eq.
(B.11)) is

=
⎡

⎣
⎢
⎢

− − ⎤

⎦
⎥
⎥sym

M̂
34.84 0.30 3.61

40.36 1.67
. 15.35

MPa,
(33)

and the MLE of the mean stress vector is

Table 1
In situ stress tensor components in x-y-z coordinate system and the estimated mean.

Depth (m) Stress
number

Stress tensor components (MPa)

σx τxy τxz σy τyz σz

416.55 S1 43.25 4.67 −3.44 32.67 −0.34 15.35
416.57 S2 41.20 6.59 −3.32 31.30 0.46 17.69
416.60 S3 42.92 8.80 −3.97 35.83 2.83 14.57
416.62 S4 45.11 5.42 −4.44 31.59 2.29 18.34
416.68 S5 42.57 4.36 −1.93 28.27 0.85 15.13
416.69 S6 53.78 5.26 −2.26 31.51 3.62 17.61
416.70 S7 26.05 −7.48 −2.57 38.40 1.74 12.35
416.71 S8 28.85 −12.01 −5.65 45.40 6.71 16.29
416.73 S9 30.96 −9.73 −3.86 42.67 0.45 14.56
416.77 S10 23.88 −9.88 −3.70 51.36 1.09 15.19
416.79 S11 34.97 −14.97 −4.51 57.51 1.80 11.74
416.81 S12 27.89 −10.89 −1.60 44.53 −0.24 14.22
417.17 S13 33.78 6.06 −2.19 46.27 0.19 14.59
417.17 S14 33.09 6.35 −5.77 45.00 0.10 18.15
417.17 S15 26.07 4.60 −3.30 42.37 3.14 12.69
417.17 S16 28.18 4.70 −3.89 40.82 3.72 18.25
417.17 S17 29.73 3.00 −4.92 40.55 −0.08 14.22
Estimated mean S 34.84 −0.30 −3.61 40.36 1.67 15.35

Table 2
Correlation matrix of the distinct stress tensor components shown in Table 1.

σx τxy τxz σy τyz σz

σx 1.00 0.53 0.18 −0.67 0.01 0.42
τxy 1.00 0.08 −0.66 −0.12 0.48
τxz 1.00 −0.32 −0.29 −0.24
σy 1.00 0.03 −0.44
τyz sym. 1.00 0.17
σz 1.00

Table 3
p-values between the distinct stress tensor components shown in Table 1.

σx τxy τxz σy τyz σz

σx 1.00 0.03 0.50 0.00 0.98 0.09
τxy 1.00 0.77 0.00 0.65 0.05
τxz 1.00 0.21 0.26 0.35
σy 1.00 0.92 0.08
τyz sym. 1.00 0.51
σz 1.00
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= − −m̂ [34.84 0.30 3.61 40.36 1.67 15.35] MPa,d
T (34)

which are seen to have identical values. The covariance matrix of the
distinct tensor components, by application of either Eqs. (B.9) or (8), is

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢

−
− −

− − −
−

⎤

⎦

⎥
⎥
⎥
⎥
⎥sym

Ω̂

67.59 34.96 1.74 42.09 0.11 7.01
63.61 0.72 40.24 1.75 7.86

1.43 2.92 0.63 0.59
58.29 0.38 6.85

. 3.33 0.63
4.13

MPa .2

(35)

The quasi-tensorial approach,43,46,47 which treats distinct tensor com-
ponents as independent quantities and ignores their covariances, pro-
duces the diagonal covariance matrix39,40, i.e.

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥sym

Ωdiag( ˆ )

67.59 0 0 0 0 0
63.61 0 0 0 0

1.43 0 0 0
58.29 0 0

. 3.33 0
4.13

MPa .2

(36)

The leading diagonals of these two matrices are seen to be identical.
The implication of ignoring the covariances in probability density cal-
culation is demonstrated in a later section.

When using Eq. (5), the covariance matrix of all tensor components
is

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

−
− − −

− − − −
− − −

− −
−

− −

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

sym

Σ̂

67.59 34.96 1.74 34.96 42.09 0.11 1.74 0.11 7.01
63.61 0.72 63.61 40.24 1.75 0.72 1.75 7.86

1.43 0.72 2.92 0.63 1.43 0.63 0.59
63.61 40.24 1.75 0.72 1.75 7.86

58.29 0.38 2.92 0.38 6.85
3.33 0.63 3.33 0.63

. 1.43 0.63 0.59
3.33 0.63

4.13

MPa ,2

(37)

and comparison of Eqs. (35) and (37) demonstrates that the covariance
matrix of all tensor components Σ̂ adds nothing to the covariance ma-
trix of distinct tensor components Ω̂ except for redundant data in the
repeated second and fourth, third and seventh, and sixth and eighth
rows and columns. In other words, Ω̂ carries sufficient statistical in-
formation to allow the variability of stress tensors to be interpreted by
their distinct tensor components.

To examine the transformational consistency of the mean and cov-
ariance matrix, the data of Table 1 are transformed into a new Cartesian
coordinate system X-Y-Z that coincides with the orientations of the
principal stresses of the estimated mean stress tensor in Eq. (33). The
principal stress directions, the eigenvectors of the mean stress tensor,
are

= ⎡

⎣
⎢

− −
− −
− −

⎤

⎦
⎥R

0.1037 0.9792 0.1743
0.9913 0.1160 0.0615
0.0805 0.1664 0.9828

,T

(38)

where the three column vectors correspond to the directions of σ1, σ2
and σ3, respectively, referred to the x-y-z frame. Stress transformation
into the X-Y-Z Cartesian coordinate system is performed using Eq. (10),
and the transformed stresses are presented in Table 4.

The MLE of the mean vector of the 17 transformed stress tensors is

′ =m̂ [40.52 0 0 35.42 0 14.61] MPa,d
T (39)

which is equal to that obtained by transforming the original mean in Eq.
(33) using Eq. (19), i.e.

=RMRvech( ) [40.52 0 0 35.42 0 14.61] MPa.T T (40)

The MLE of the covariance matrix of the distinct tensor components of
the 17 transformed stress tensors is

′ =

⎡

⎣

⎢
⎢
⎢
⎢
⎢

− − − − − ⎤

⎦

⎥
⎥
⎥
⎥
⎥sym

Ω̂

74.53 38.37 11.65 56.12 7.95 9.17
45.74 9.07 32.75 0.97 5.46

5.79 10.52 0.43 2.01
78.81 10.49 9.86

. 3.35 0.62
3.67

MPa .2

(41)

The covariance matrix obtained by using Eq. (22) to transform the
covariance matrix Σ of the stress tensors in the x-y-z coordinate system
is

⋅ ⊗ ⋅ ⋅ ⊗ ⋅

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢

− − − − − ⎤

⎦

⎥
⎥
⎥
⎥
⎥sym

B R R Σ R R B( ) ( )

74.53 38.37 11.65 56.12 7.95 9.17
45.74 9.07 32.75 0.97 5.46

5.79 10.52 0.43 2.01
78.81 10.49 9.86

. 3.35 0.62
3.67

MPa ,

p
T T T

p

2

(42)

which is identical to that of Eq. (41). These analyses confirm the
transformational consistency of the mean and covariance matrix de-
rived analytically in Section 3.

4.3. Transformational invariance of the PDF of the multivariate distribution

To test the transformational invariance of the PDF, we firstly ex-
amine the transformational invariance of the determinant of the cov-
ariance matrix Ω. The determinant of the covariance matrix in the x-y-z
coordinate system (i.e. Eq. (35)) is

= ×Ω̂ 6.57 10 MPa ,5 12 (43)

which is the same as the determinant of the covariance matrix in X-Y-Z
coordinate system (i.e. Eqs. (41) or (42)):

′ = ×Ω̂ 6.57 10 MPa .5 12 (44)

Calculations of the probability densities corresponding to the stress data
shown in Table 1 and Table 4 using Eqs. (6) and (23), respectively, are
tabulated in Table 5. The identical probability densities of the same
stress states under these two coordinate systems confirms the trans-
formational invariance of the PDF of the proposed multivariate dis-
tribution model. A large number of additional calculations using dif-
ferent coordinate systems, but not presented here for brevity, also
confirm the transformational invariance. These analyses verify that the
proposed multivariate distribution model can characterise stress
variability in any convenient coordinate system.

Table 4
In situ stress tensor components in X-Y-Z coordinate system and the estimated mean.

Depth (m) Stress
number

Stress tensor components (MPa)

σX τXY τXZ σY τYZ σZ

416.55 S1 31.71 3.36 −0.75 44.53 1.20 15.02
416.57 S2 30.09 5.10 0.66 42.97 0.61 17.13
416.60 S3 34.48 7.18 2.86 45.23 0.98 13.62
416.62 S4 30.97 3.22 2.29 46.78 0.40 17.29
416.68 S5 27.61 2.59 0.48 43.21 2.72 15.15
416.69 S6 31.20 2.19 3.15 54.27 4.20 17.44
416.70 S7 39.96 −6.08 −1.27 24.91 0.27 11.94
416.71 S8 48.66 −11.03 2.85 27.58 −2.03 14.29
416.73 S9 44.50 −8.20 −2.98 29.69 −0.56 13.99
416.77 S10 53.10 −6.72 −2.75 22.93 −1.70 14.41
416.79 S11 60.41 −12.16 −3.75 32.64 0.25 11.18
416.81 S12 46.38 −8.46 −4.14 25.79 1.03 14.47
417.17 S13 44.75 7.27 −0.81 35.50 0.79 14.39
417.17 S14 43.51 7.09 −0.17 36.15 −3.27 16.58
417.17 S15 41.62 5.65 2.10 27.92 −0.80 11.60
417.17 S16 40.23 5.14 3.23 30.27 −1.83 16.75
417.17 S17 39.71 3.87 −1.00 31.73 −2.26 13.05
Estimated mean ′S 40.52 0.00 0.00 35.42 0.00 14.61
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Further calculation of the probability densities corresponding to the
stresses shown in Table 1 but in a quasi-tensorial manner, i.e. using the
covariance matrix shown in Eq. (36), is also presented in Table 5. The
non-identical probability densities between the quasi-tensorial and
proposed multivariate approach demonstrates that, by not considering
the correlations between distinct tensor components, the former ap-
proach may yield incorrect results.

4.4. Effect of the sequence of distinct tensor components on stress variability
analysis

The sequence of the distinct tensor components used above is that
shown in Eq. (9). Here, the effect of changing the sequence of distinct
tensor components on stress variability analysis is tested. For the dis-
tinct tensor components, if the shear components are put first, followed
by the normal components, then a new stress vector is obtained:

″ =s [τ τ τ σ σ σ ] .d xy xz yz x y z T (45)

Using this sequence for the stress tensors shown in Table 1 in x-y-z
coordinate system, the new estimated mean is

″ = − −m̂ [ 0.30 3.61 1.67 34.84 40.36 15.35] MPa,d
T (46)

and the covariance matrix is

″ =

⎡

⎣

⎢
⎢
⎢
⎢
⎢

− −
− − −

−
−

⎤

⎦

⎥
⎥
⎥
⎥
⎥

Ω
sym

ˆ

63.61 0.72 1.75 34.96 40.24 7.86
1.43 0.63 1.74 2.92 0.59

3.33 0.11 0.38 0.63
67.59 42.09 7.01

. 58.29 6.85
4.13

MPa ,2

(47)

which has a determinant of

″ = ×Ω̂ 6.57 10 MPa .5 12 (48)

Comparing Eq. (46) to Eq. (34), and Eq. (47) to Eq. (35) shows that the
elements of the mean and covariance matrices are identical, although in
a different sequence. The probability densities corresponding to the 17
stresses in the new tensor component sequence are shown in Table 5.
The identical covariance matrix determinant obtained from Eqs. (48)
and (43), and the same probability densities of the 17 stresses in the
new tensor component sequence demonstrate that the sequence of

stress components has no effect on the statistical properties of the stress
data. Nevertheless, for consistency with the transition matrix Bp (i.e.
Eq. (B.4)) the order given above in Eq. (9) is recommended.

In the above analyses, a multivariate normal distribution has been
used. Additionally, statistical equivalence between matrix variate and
multivariate statistics has been proved for Wishart, gamma and beta
distributions.51 However, it is not yet known what multivariate dis-
tribution type of distinct tensor components is best suited to in situ
stresses. When information regarding the underlying probability dis-
tribution of in situ stress tensor components becomes available, the
methodology presented here can be used but with the appropriate
distribution being substituted for the multivariate normal distribution.

5. Conclusions and further comments

A multivariate distribution model of the distinct tensor components
is presented here to characterise the variability of stress tensors ob-
tained in a common Cartesian coordinate system when the sample size

> +n p p( 1)1
2 . The proposed model is faithful to the tensorial nature

of stress, in that it does not decompose the stress tensor into scalar (i.e.
principal stress magnitude) and vector (i.e. principal stress orientation)
components, and then process them separately. In addition to giving a
systematic proposal for using a multivariate statistical distribution
model for stress variability characterisation and demonstrating the
reason why the variability of stress tensors can be characterised using a
multivariate distribution of their distinct tensor components, we also
analytically demonstrate the transformational consistency and in-
variance of the proposed statistical model under coordinate system
transformation.

The discussion of the equivalence between the matrix variate
normal distribution and the multivariate normal distribution of all
matrix components shows that the variability of matrix-valued data can
be characterised by its components in a multivariate manner. However,
because of the symmetric nature of stress tensor, the repeated rows and
columns in the covariance matrix render it singular and thus hinder the
calculation of the PDF. By introducing a transition matrix and using the
equivalence between the symmetric matrix variate normal distribution
and the multivariate normal distribution of distinct tensor components,
it is seen that the variability of stress tensors can be represented and
interpreted in terms of the variability of their distinct tensor compo-
nents in a multivariate manner.

The transformational consistency of both the mean and the covar-
iance matrix of the proposed multivariate distribution model shows that
the mean and covariance matrix in one coordinate system are related to
those in another system by a transformation matrix. Additionally, the
determinant of the covariance matrix is invariant with respect to co-
ordinate system. The transformation invariance of the PDF is also de-
rived, which demonstrates that the probability density of a stress state
is invariant and leads to the observation that the variability of stress
tensors can be characterised in any convenient coordinate system. This
supports the understanding of the probability of a stress state, in that no
matter in which coordinate system the stress tensor is obtained, there
should be a particular probability associated with it. Applications of
actual in situ stress data confirm the transformational consistency and
invariance of the proposed distribution model and also demonstrate
that the quasi-tensorial approach may give us biased results. The se-
quence in a multivariate analysis of the distinct tensor components is
seen to have no effect on the characterisation of stress variability.

When applied to actual in situ stress data, the proposed multivariate
model indicates differing degrees of statistical dependence between the
six distinct tensor components. The geological basis for this dependence
is not known, nor is whether similar dependence exists in other frac-
tured rock masses. As such dependence may have ramifications for
engineering design, particularly when reliability- or risk-based design
approaches are being implemented, we suggest that these matters be
investigated when appropriate in situ stress data become available.

Table 5
Probability densities of the stress tensors in x-y-z and X-Y-Z coordinate systems, and in x-
y-z coordinate system using quasi-tensorial approach as well as using proposed approach
but with changed tensor component sequence.

Stress number Probability density

Coordinate
system x-y-z

Coordinate
system X-Y-Z

Quasi-
tensorial
approach

After tensor
component
sequence change

S1 1.01E-06 1.01E-06 2.88E-07 1.01E-06
S2 1.35E-06 1.35E-06 1.84E-07 1.35E-06
S3 4.85E-07 4.85E-07 3.55E-07 4.85E-07
S4 8.78E-07 8.78E-07 8.35E-08 8.78E-07
S5 7.37E-07 7.37E-07 9.49E-08 7.37E-07
S6 6.31E-08 6.31E-08 8.25E-09 6.31E-08
S7 2.75E-07 2.75E-07 1.53E-07 2.75E-07
S8 2.77E-08 2.77E-08 1.75E-09 2.77E-08
S9 1.08E-06 1.08E-06 5.60E-07 1.08E-06
S10 7.38E-07 7.38E-07 1.21E-07 7.38E-07
S11 1.59E-08 1.59E-08 4.15E-09 1.59E-08
S12 1.81E-07 1.81E-07 5.49E-08 1.81E-07
S13 1.28E-07 1.28E-07 3.23E-07 1.28E-07
S14 1.05E-07 1.05E-07 5.40E-08 1.05E-07
S15 1.12E-07 1.12E-07 2.43E-07 1.12E-07
S16 1.82E-07 1.82E-07 2.00E-07 1.82E-07
S17 3.81E-07 3.81E-07 4.08E-07 3.81E-07
Mean stress 4.97E-06 4.97E-06 1.81E-06 4.97E-06
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The proposed statistical distribution model not only provides a ro-
bust approach to characterise the variability of stress in rock masses,
but also gives a theoretical support to many aspects of rock mechanics
involving stress variability. For example, based on the proposed mul-
tivariate statistical distribution model, random stress tensors can be
generated using a multivariate random vector generation approach and
used in Monte-Carlo simulation to incorporate stress variability into
reliability-based rock engineering design.39 However, one important
question that continues to challenge the rock mechanics community is
how many in situ stress measurements are necessary to characterise the
state of stress in a specific engineering project. One suggestion is that,
by using the proposed statistical distribution model, once the appro-
priate multivariate statistical distribution type has been determined a

series of multivariate statistical tests could then be conducted to es-
tablish the minimum number of in situ stress measurements needed in
order to reach a certain significance level. We are conducting further
work to investigate this. Notwithstanding the results of this future
work, the proposed statistical distribution model is expected to be
helpful in the analysis of stress variability in rock mechanics and rock
engineering.
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Appendix A. Matrix variate normal distribution

Following customary concepts,51 the matrix ×p qX ( ) is said to follow a matrix variate normal distribution with mean matrix ×p qM ( ) and
covariance matrix ×p qΣ ( ), i.e.

NX M Σ~ ( , ),p q, (A.1)

if all components of X follow a multivariate normal distribution, i.e.

Nx m Σ~ ( , ),pq (A.2)

where

=x Xvec( )T (A.3)

is the vector containing all the matrix components, and the mean vector is

=m Mvec( ).T (A.4)

Here, ⋅vec( ) is the vectorisation function that vectorises a matrix into a column vector by stacking the columns.68 For example, the general matrix

= ⎡
⎣⎢

⎤
⎦⎥

a c
b dA

(A.5)

is vectorised to

= a b c dAvec( ) [ ] .T (A.6)

with [·]T denoting the matrix transpose.
The PDF of the matrix variate normal distribution is51(p.55)

= ⎛
⎝

− − − ⎞
⎠

− −f X
Σ

U X M V X M( ) 1
(2π)

etr 1
2

( ) ( ) ,
pq

T1 1

(A.7)

where |·| is the matrix determinant, ⋅etr( ) is the matrix exponential trace, i.e. ⋅ = ⋅etr( ) exp (tr( )), with ⋅tr( ) denoting the trace of a matrix, and
×p pU ( ) and ×q qV ( ) are symmetric positive definite (SPD) matrices55 obtained by decomposition of Σ,

= ⊗Σ U V, (A.8)

where ⊗ denotes the Kronecker product.57 Maximum likelihood estimation (MLE) of the mean matrix is54

∑= =
=n

Μ X Xˆ 1 .
i

n

i
1 (A.9)

For a sample size >n pq, the MLE of the covariance matrix is51(p.47),54

=
=

= ∑ − ⋅ −=

Σ x
X

X X X X

ˆ cov( )
cov(vec( ))

vec( ) (vec( )) ,

T

n i
n

i
T T

i
T T T1

1 (A.10)

where ⋅cov( ) denotes the covariance function69(p.428). The condition >n pq signifies that only when this sample size is met can a meaningful MLE of
the covariance matrix using Eq. (A.10) be obtained.53

Appendix B. Symmetric matrix variate normal distribution

The symmetric matrix variate normal distribution is derived from the matrix variate normal distribution shown in Appendix A. This derivation
makes use of several special matrix operators. One is the half-vectorisation function ⋅vech( ), which stacks only the lower triangular (i.e. on and below
the diagonal) columns of a symmetric matrix69(p.246). For example, for a symmetric matrix such as the 3 × 3 stress tensor
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=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

S
σ τ τ
τ σ τ
τ τ σ

,
x xy xz

yx y yz

zx zy z (B.1)

its half-vectorisation is

=
=

Svech( ) [σ τ τ σ τ σ ]
[σ τ τ σ τ σ ]

x yx zx y zy z T

x xy xz y yz z T (B.2)

The ⋅vech( ) function thus forms a vector that contains only the distinct components of a symmetric matrix. The other required operator is the
transition matrix Bp, which allows elimination of duplicated elements in the vector obtained from the ⋅vec( ) functions, such that51(p.11),69(p.246),70

=S B Svech( ) vec( ).p
T

(B.3)

The transition matrices associated with two- and three-dimensional symmetric matrices are respectively

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

B B
1 0 0
0 0.5 0
0 0.5 0
0 0 1

and

1 0 0 0 0 0
0 0.5 0 0 0 0
0 0 0.5 0 0 0
0 0.5 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0.5 0
0 0 0.5 0 0 0
0 0 0 0 0.5 0
0 0 0 0 0 1

.2 3

(B.4)

The symmetric matrix variate normal distribution and allied statistics are defined next.51 For the symmetric matrix ×p pS ( ), if the + ×p p( 1) 11
2

vector

=s Svech( )d (B.5)

containing the distinct components of S follows a multivariate normal distribution with mean md and covariance matrix Ω, i.e.

+Ns m Ω~ ( , ),d p p d( 1)1
2 (B.6)

where md is the vector of distinct mean components

=m Mvech( ),d (B.7)

then matrix S is said to follow a symmetric matrix variate normal distribution with mean matrix M and covariance matrix Ω,

SNS M Ω~ ( , ).p p, (B.8)

Here, the subscript “d” denotes “distinct”. The covariance matrix of the distinct components is found from the covariance matrix of all matrix
components (i.e. Eq. (A.10)) by application of the transition matrix:

=Ω B ΣB .p
T

p (B.9)

Application of the transition matrix Bp is thus seen to form the non-singular covariance matrix Ω through elimination of the repeated rows and
columns in covariance matrix Σ. The PDF of the symmetric matrix variate normal distribution is51(p.70)

= ⎛
⎝

− − − ⎞
⎠+

− −f S
Ω

U S M V S M( ) 1

(2π)
etr 1

2
( ) ( ) ,

p p( 1)

1 1
1
2 (B.10)

where U and V are ×p p SPD matrices that satisfy both Eq. (2) and the identity UV = VU. The MLE of the mean tensor M is

∑= =
=n

Μ S Sˆ 1 ,
i

n

i
1 (B.11)

and when the sample size > + ×n p p( 1) 11
2 , the MLE of the covariance matrix Ω is53

=
=

= ∑ − ⋅ −=

Ω s
S

S S S S

ˆ cov( )
cov(vech( ))

vech( ) (vech( )) .

d

n i
n

i i
T1

1 (B.12)

Appendix C. Transformational invariance of the determinant of covariance matrix Ω

To derive the transformational invariance of the determinant of covariance matrix Ω, several matrix functions related to the transition matrix Bp
need to be introduced first. Based on Bp, Nel56(Eqs. 2.5–2.8) introduces a ×p p2 2 matrix

= +M B B ,p p p (C.1)

where ⋅ +( ) denotes the Moore-Penrose pseudoinverse. For this the following identities hold:
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=

=
=

+ +

B B M

M M

B B M

B B M
B M B

,

,

,

and
.

p
T

p
T

p
T

p p
T

p
T

p
T

p

p p p

p p p (C.2)

Also, the determinant of B Bp
T

p is a constant56 (Eq. 2.16),

= − −B B 2 .p
T

p
p p( 1)1

2 (C.3)

For a transformation matrix R, the following identity can be obtained based on Eq. 2.9 in Nel56:

⊗ = ⊗
⊗ = ⊗

M R R R R M
R R M M R R

( ) ( ) and
( ) ( ).

p p
T T

p p
T T (C.4)

Using Eq. (27) and Eq. 2.11 in Nel56, then

⊗

= ⊗

= ⊗

+ −

+ − −

+

B R R B

B R R B

B R R B

( ( ) )

( )

( ) ,

p p

p p

p
T T

p

1

1 1

(C.5)

and hence

⊗ ⋅ ⊗ =+ +B R R B B R R B I( ( ) ) ( ( ) ) .p p p
T T

p (C.6)

Since two square matrices A and C69(p.58) satisfy the identity

= ⋅AC A C , (C.7)

then the determinant of Eq. (C.6) is

⊗ ⋅ ⊗ =+ +B R R B B R R B( ) ( ) 1.p p p
T T

p (C.8)

Based on these matrix functions, the determinant of the covariance matrix Ω becomes
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and the determinant of the transformed covariance matrix Ω is
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2 (C.10)

As the right hand side of both Eqs. (C.9) and (C.10) are identical, we see that

= ′Ω Ω , (C.11)

which confirms the transformational invariance of the determinant of covariance matrix Ω.
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