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Abstract
In this study, the combined finite–discrete element method (FDEM), which merges the finite element-based analysis of continua 
with discrete element-based transient dynamics, contact detection, and contact interaction solutions, is used to simulate the response 
of a flyer plate impact experiment in a Westerly granite sample that contains a randomized set of cracks. FDEM has demonstrated 
to be a strongly improved physical model as it can accurately reproduce the velocity interferometer system for any reflector plot 
and capture the spall region and spall strength obtained from flyer plate experiments in granite. The number and the distributions of 
preexisting fractures have also been studied to get better understanding of the effect of structural cracks on the mechanical behavior 
and the failure path of Westerly granite under high strain rate impact. These FDEM capabilities, in the context of rock mechanics, 
are very important for two main reasons. First, the FDEM can be further applied to many complex large-scale problems such as 
planetary impact, rock blasting, seismic wave propagation, characterization of material failure around explosive crater formations, 
and detection of hydrocarbon flow in petroleum industry. Second, it can be used to validate high strain rate impact experiments 
and essentially, via virtual experimentation, replace these high-cost experiments by very cost- and time-effective simulations.

Keywords Combined finite–discrete element method (FDEM) · Brittle material · High strain rate · Flyer plate, granite

1 Introduction

The shock-induced response of geological materials has been 
a focus of research efforts for the last several decades due 
to its importance for many fields and applications includ-
ing impact and explosive crater formations in planetary sci-
ence, response of geomaterials to blast/explosive loading 
for underground explosion detection and discrimination, 
and rock fragmentation processes which are very relevant to 
the energy industry due to the use of innovative high strain 
rate fracking techniques. In these applications, strain rates of 
the order of  105 s−1 and higher are common, and therefore, 
loading processes are usually adiabatic. In a recent article 
by Yuan and Prakash, they study these issues by conduct-
ing novel plate impact experiments designed specifically to 

investigate inelasticity and shock-induced response in West-
erly granite rock samples [1]. They use multi-beam VALYN 
velocity interferometer for any reflector (VISAR) to measure 
the free surface particle velocity in order to calculate the 
spall strength following the shock-induced compression in 
Westerly granite samples [2]. However, in many cases, such 
as planetary science applications, experimental evidence, 
or data often do not exist for these systems. Thus, reliable 
numerical models are critical for the prediction of material 
strength and failure behavior necessary for studying, optimiz-
ing, and developing critical processes for these applications.

With the rapid development of high-performance com-
puting capabilities and new numerical approaches, various 
modeling tools have been employed to study the behavior of 
brittle materials under high strain rate impact loading condi-
tions [3]. Among the 2D numerical studies, the work of Liu 
and Wang can be mentioned [4, 5]. Both of these studies uti-
lized in-house numerical tools that do not account for inelas-
tic strains in the rock to study rock fragmentation following 
indention [4]. Another example of 2D numerical modeling is 
the work by Saksala where a viscoplastic consistency model 
and an isotropic damage description are coupled to take both 
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the compressive and the tensile responses of the rock into 
account [6]. Among the studies using discontinuous mechanics 
approach, Thuro et al. [7] used a Particle Flow Code (PFC2D) 
to investigate the crack pattern. A continuum approach was 
used by Forquin and Hild to study the dynamic fragmentation 
as a result of impact loading in a wide range of brittle materials 
(e.g., concrete, ceramics, silicate glass, and rock) [8]. However, 
being a continuum-based model, certain constraints (such as 
re-meshing problem and element deletion constraint due to 
excessive element distortion) arrive after the material breaks 
into fragments that are ejected as a consequence of the high 
strain rate impact load.

From a computational mechanics point of view, the simula-
tion of high strain rate processes is challenging because upon 
failure a brittle material, such as granite, undergoes signifi-
cant failure and fragmentation, with the resulting particles 
experiencing significant displacement and rotation during 
the process [9]. Numerical models based purely on a con-
tinuum assumption, such as the finite element method, have 
been used extensively for this purpose; however, the limita-
tions connected with the assumption of a continuum medium 
become increasingly constraining when trying to simulate the 
material behavior in the post-failure regime. Because of these 
reasons, a numerical tool that has the capability of handling 
continua and discontinua simultaneously would be useful [10]. 
Fortunately, a recently developed numerical method—the 
combined finite–discrete element method (FDEM) [11–14], 
which merges finite element-based analysis of continua with 
discrete element-based transient dynamics, contact detection 
and contact interaction solutions of discontinua, provides a 
natural solution to modeling high-velocity impact problem in 
brittle material.

In this work, the FDEM is used to investigate the behavior 
of brittle materials under high strain rate loading. In the fol-
lowing sections, we first provide the reader with a brief intro-
duction to the theories of FDEM. Then, we illustrate the setup 
of the numerical model. The tests were numerically modeled, 
and the results were compared with the experimental data in 
order to validate the model. Furthermore, in the present study, 
the effect of the presence of preexisting cracks (with different 
lengths and orientations) in the material is analyzed in detail 
and the simulations are directly compared with the experi-
mental observations. The simulation capabilities of FDEM for 
modeling flyer plate experiments are explored for the first time 
in the research community.

2  The combined finite–discrete element 
method (FDEM)

The FDEM was originally developed by Munjiza in the 
early 1990s to simulate the transition behavior of material 
from continuum to discontinuum [14]. The essence of this 

method is to merge the algorithmic advantages of the DEM 
with those of the finite element method (FEM) [15]. The 
main theory of the FDEM can be broadly broken down into 
the following parts: governing equations, finite strain-based 
formulation for deformation description, contact detection, 
and contact interaction algorithms [16–18]. In this work, an 
in-house implementation of FDEM called HOSS (Hybrid 
Optimization Software Suite) was used to simulate the flyer 
plate experiment [19–21].

2.1  Governing equations

The general governing equation of the FDEM is [11] 

where M is the lumped mass matrix, C is the damping 
matrix, x is the displacement vector, and f is the equivalent 
force vector acting on each node which includes all forces 
existing in the system such as the forces due to material 
deformation and contact forces between solid elements. An 
explicit time integration scheme based on a central differ-
ence method is employed to solve Eq. (1) with respect to 
time in order to obtain the transient evolution of the system.

2.2  Finite strain‑based formulation

In FDEM, each discrete element consists of a subset of finite 
elements that are allowed to deform according to the applied 
loads. Deformation of the finite elements is described by a 
multiplicative decomposition-based formulation [13]. This 
framework allows for a uniform solution for both isotropic 
and general anisotropic materials for capturing detailed 
material deformation [16]. Moreover, volumetric locking 
due to the lower-order finite element implementations can 
be eliminated by using a selective stress integration scheme.

2.3  Contact detection

The contact detection between discrete elements is con-
ducted using the MRCK (Munjiza–Rougier–Carney–Knight) 
algorithm which is based on the decomposition of the simu-
lation space into identical square (two-dimensional) or cubi-
cal (three-dimensional) search cells [12, 22]. Consider that 
for any two given particles or elements, one called the con-
tactor and the other one the target, both are mapped onto 
search cells according to their current position. A more in 
detail description of the contact detection strategy is beyond 
the scope of this paper; however, the interested reader is 
referred to [12] for more information. The goal of the contact 
search process is to determine whether the contactor and the 
target share at least one cell. After processing the contact 
detection, a list that contains all the pairs of elements poten-
tially in contact is established and sent for contact interaction 

(1)𝐌�̈� + 𝐂�̇� = 𝐟 ,
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process [15]. The MRCK contact detection algorithm has 
proven to be highly efficient resulting in a theoretical CPU 
time proportional to the total number of elements present 
in the system, and it is applicable to systems consisting of 
many bodies of different shapes and sizes [22].

2.4  Damage modeling

In HOSS, cracks form along the boundaries of the finite ele-
ments. In order to capture fine mechanisms, such as crack 
nucleation, propagation, branching, and reorientation, the 
crack networks must be finely resolved spatially, with doz-
ens to hundreds of finite elements along the length of each 
crack [23].

The problem of interest for this work (described in more 
detail in the next section) is a 2D sample under high-veloc-
ity impact loading. For the purpose of fracture modeling, 
HOSS considers two primary modes of failure in 2D: Mode 
I, which is opening due to tensile load, and Mode II, which 
is crack growth due to shear loading conditions [11, 12, 
14, 17]. FDEM in HOSS can also allow for mixed mode 
crack in a consistent formulation. This feature is not always 
implemented in other numerical methods. Since the prob-
lem of interest will be mainly dominated by Mode I crack 
growth, we focus this discussion on the key details as to how 
HOSS accounts for Mode I crack growth. However, it must 
be pointed out that the Mode II crack growth is handled in 
a similar way to the Mode I case, except that different sets 
of parameters are applied. It is worth noting that, although 
globally Mode I failure dominates this problem, both shear 
and opening can occur at a local mesh element scale. In 
addition to the cohesion in shear, FDEM can also allow for 
modeling friction (either constant friction or elaborated fric-
tion law) even after the cohesion is fully broken.

Between the interface of any two finite elements, there 
lie a user-specified number of cohesive points (four are used 
in all simulations presented and discussed here), which are 
modeled as nonlinear springs, as shown in Fig. 1. As the 
two elements shown in the figure undergo tensile load and 
are pulled apart, the springs within the interface are strained 
resulting in a small space opening between the elements. 
Similarly, for shear, or Mode II, deformation, there will be 
four cohesive points that describe the shear stresses gen-
erated when one element slides relative to its neighbor. A 
typical behavior of the springs as a function of the opening 
(displacement) created between the edges of two finite ele-
ments is shown in Fig. 1.

These cohesive points between elements are respon-
sible for representing the material strength response 
both in tension and in shear. The maximum stress that 
the springs can withstand in tension is equal to the ten-
sile strength of the material ( �max

n
 ), while the maximum 

shear stress that the analogous springs can carry is equal 

to the shear strength of the material. In the first part of the 
curve (0 < 𝛿n ≤ 𝛿e

n
) , the springs follow nonlinear elastic 

behavior where no irreversible damage is accrued. The 
springs connecting any two finite elements are very stiff 
in their nonlinear elastic response, i.e., 𝛿e

n
≪ 𝛿max

n
 (the 

stiffness is, at least, two orders of magnitude larger than 
the Young’s modulus of the material) in order to repro-
duce the response of a continuum medium. If the interface 
between the elements continues to be strained past this 
elastic limit 

(

𝛿e
n
< 𝛿n ≤ 𝛿max

n

)

 , the springs enter a strain-
softening regime which represents the material developing 
irreversible damage and therefore degrading its strength 
response. Once 𝛿n > 𝛿max

n
 , the spring is considered to be 

broken and no longer supports any load. It is worth noting 
that the area below the softening portion of the curve, indi-
cated in Fig. 1, represents the specific energy (measured 
in J/m2) density dissipated during the fracture process. 
The specific fracture energy value is defined by the area 
under the cohesion curve, which is dissipated due to the 
fracturing process. The fracture energy is pre-defined in 
the FDEM framework. Figure 1 only presents a schematic 
representation of this curve. The actual shape of the curve 
is found through fitting to the experimental results that 
describe softening in geomaterials.

3  Model setup

In the recent study by Yuan and Prakash, plate impact 
experiments are employed to better understand the stress 
threshold for inelasticity in Westerly granite samples. The 
experiments are designed to obtain the Hugoniot elastic limit 
(HEL) as well as spall strength following the shock-induced 
compression in the samples. The plate impact experiments 

Fig. 1  Schematic representation of how damage is modeled in HOSS. 
�max

n
 is the tensile strength of the material, �

n
 is the normal opening 

(represented in terms of displacements, not strains), �e
n
 is the elastic 

threshold for the cohesive spring, while �max

n
 is the maximum allow-

able opening
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are conducted using an 82.5-mm bore single-stage gas-gun 
facility. Figure 2 shows the schematic of the plate impact 
experimental configuration. The rear end of the projectile 
has a sealing O-ring and a Teflon key that slides keyway 
inside the gun barrel to prevent any rotation of the projectile. 
In our simulations, for simplicity, two-dimensional plane 
strain conditions are assumed due to the O-ring constraint 
that produces zero strain in the radial direction of the target 
plate. In order to mimic the Teflon key effect on the target 
plate, roller supports are placed on the left and right side 
of the target plate. The aluminum flyer impacts the thick 
granite target plate with an initial velocity v0 , which is mod-
eled accordingly with the applied velocity on the flyer plate 
shown in Fig. 2. A polymethyl methacrylate (PMMA) win-
dow plate is placed behind the granite target plate to provide 
a reflective surface to enable particle velocity measurements 
by using a laser interferometer. The multi-beam VALYN 
VISAR is used as the interferometer system to measure the 
free surface particle velocity history at the rear surface of 
the target plate [1]. A sensor is placed in our FDEM model 
to record the particle velocity on the back of granite sample.

The problem of interest is shown schematically in Fig. 3. 
This figure illustrates the geometry of the FDEM model, 
which is based on the plate impact experiment. The model 
consists of three plates: aluminum flyer plate, granite target 
plate, and PMMA momentum trap. Within the sample, there 
are a number of preexisting cracks each with initial lengths 
determined by a power law distribution and randomly dis-
tributed orientations [24]. The probability density function 
(pdf) used for pre-seeding these cracks is as follows:

In this case, the selected minimum crack length, lmin , is 
0.5 mm, while the selected maximum crack length, lmax , 
is 3.5 mm, and the exponent of the power law, g , is 3.0. 

(2)f (x) =
[

l
g

min
+ x

(

lg
max

− l
g

min

)]
1

g

Preexisting cracks are defined as initially zero cohesion 
between the elements, while initial cohesion �max

n
 is uni-

formly applied on the other boundary of elements. A simple 
FDEM realization of the flyer plate setup is presented in 
Fig. 3 where each plate is represented by a discrete element, 
which allows for the tracking of their motion and their inter-
actions with neighboring objects, and each discrete element 
is further discretized into finite elements in order to capture 
its deformation and stress evolution when subjected to exter-
nal forces.

The FDEM material parameters for Westerly granite 
have been determined based on the previously reported 
experimental results. The granite target plate has a 
Young’s modulus of 59.3 GPa and Poisson’s ratio of 0.28, 
while the Young’s modulus and Poisson’s ratio of the alu-
minum flyer plate are 80.7 GPa and 0.3, respectively. The 
tensile and shear strength of the target plate are 12.5 MPa 
and 56.9 MPa, respectively. The maximum normal and 
tangential displacements are 0.018 mm (Table 1). The 
Young’s modulus and Poisson’s ratio of the PMMA are 
estimated to be 5.0 GPa and 0.36, respectively. These 
materials are assumed to be elastically isotropic. The elas-
tic properties are obtained from the previously mentioned 
laboratory experiment.

Within the FDEM framework, contact interaction is 
resolved using the penalty method approach [12]. When 
contact couples are identified, a penalty function-based 
contact interaction algorithm is used to calculate the con-
tact forces between contacting elements. In the penalty 
function method, a small penetration or overlap is allowed 

PMMA Window

Aluminum 
Flyer Plate

Granite 
Target Plate

Target Holder

VISAR Probe

9mm

82.5mm

18mm

Fig. 2  Schematic of the flyer plate experiment (modified from [1])

Flyer Plate (Aluminum)

Target Plate (Granite)

Momentum Trap Window (PMMA)

0

VAR Sensor

Fig. 3  Schematic of the FDEM setup for a flyer plate simulation

Table 1  Granite material properties

Young’s modulus 59.3 GPa
Poisson’s ratio 0.28
Tensile strength 12.5 MPa
Shear strength 56.9 MPa
Maximum normal displacement 0.018 mm
Maximum tangential displacement 0.018 mm
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between elements in contact, which then determines the 
normal contact force (magnitude and direction) acting on 
the contacting elements. This approach employs a pen-
alty parameter in order to calculate the contact force. To 
achieve perfect contact without overlapping, this penalty 
parameter should be infinity. Since this is not numerically 
possible, a large but finite penalty parameter is employed. 
A recent study shows that in general a penalty parame-
ter that is about 1–2 orders of magnitude larger than the 
Young’s modulus of the material will ensure the correct-
ness of the results [25]. By compromising between achiev-
ing the correct elastic response between contact elements 
and maximizing the time step size in order to reduce the 
overall computational expense, a penalty parameter one 
hundred times larger than the particles’ Young’s modulus, 
i.e., 5930 GPa, is used. Detailed material and calculation 
parameters are tabulated in Table 2.

There were about 193,000 constant strain triangle 
(CST) elements used in the model. The CST element size 
was 0.2 mm. The simulations were run for 60,000 time 
steps, with a time step of 3 × 10−5 µs. The total time in 
each simulation is 18 µs. The results from HOSS were 
output every 400 time steps, providing 150 output files of 
data per simulation. Each HOSS simulation took about 1 h 
of computation time on 140 processors in parallel.

4  Simulation results

4.1  Model evolution and validation 
with experiment

Initially, the purely hyper-elastic finite element model (i.e., 
no fracturing of the material is allowed) is employed to simu-
late the flyer plate experiment. As shown in Fig. 4, the hyper-
elastic model can predict quite well the maximum velocity in 
the VISAR plot. However, instead of capturing the pullback 
signal observed in the experiment, the model predicts a sharp 
drop in the velocity, which returns to zero, after the peak. 
This inconsistent result for the purely elastic case is obtained 
because the material is not allowed to break/fracture. There-
fore, the transition from continua to discontinua capability in 

the combined FDEM is the key factor to capture the physics 
at high-rate impact for brittle materials.

As shown in Fig. 5, the simulation for the impact velocity 
of 91.5 m/s can capture the VISAR plot very well when the 
FDEM model is used. First, the longitudinal wave propaga-
tion takes about 3 µs to travel from the top to the bottom of the 
target plate. Once the wave reaches the bottom, the velocity at 
free surface increases significantly to the maximum of about 
82 m/s. The velocity keeps almost constant until the shock 
front rebounds from the PMMA window and travels back to 
interact with the release wave, creating a tensile stress state 
and corresponding fracture or spall region. Due to the high 
density of fractures generated in the spall region, the target 
plate is separated into two parts. Since there is a PMMA plate 
placed behind the granite plate, the free surface velocity at the 
bottom of the granite plate drops drastically at 6 µs and fluctu-
ates at around 50 m/s. If the PMMA plate is removed, after 
the peak, the free surface velocity drops to approximately the 
initial impact velocity of 91.5 m/s (Fig. 6). This agrees with the 
argument mentioned in the experimental paper by Yuan and 
Prakash [1] where they claimed that in the spall experiments 
without the PMMA window plate, the free surface velocity 
after peak is expected to be equal to the impact velocity.

From our simulation results, the spall strength, �spall , can be 
calculated from the estimated particle velocities Vmax and Vmin 
by using the following equations:

(3)

�spall =
VB − VA

2

(

�CL

)

granite

VB =

(

�CL

)

granite
−
(

�CL

)

PMMA
(

�CL

)

granite

Vmax

VA =

(

�CL

)

granite
+
(

�CL

)

PMMA
(

�CL

)

granite

Vmin

Table 2  Material and numerical simulation parameters

Impact 
velocity 
(m/s)

Flyer plate 
material

Flyer thick-
ness (mm)

Target (granite) 
thickness (mm)

Impact 
stress 
(GPa)

91.5 Aluminum 8.85 19.05 0.7
156.5 Aluminum 9.12 18.90 1.2
249.1 Aluminum 8.95 18.70 1.8
364.5 Aluminum 8.95 19.01 2.9 Fig. 4  Particle velocity versus time plot. Comparison between purely 

elastic simulation versus experiment, at impact velocity of 91.5 m/s
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where 
(

�CL

)

granite
 and 

(

�CL

)

PMMA
 represent the longitudinal 

impedance of granite and PMMA, respectively.
As shown in Table 3, the spall strength of the Westerly 

granite at different impact stresses (or impact velocities) is 
calculated from the simulation results and is approximately 
48 MPa. It is found that the spall strengths estimated from 
the experiments are in very good agreement with those from 
simulation, and it is nearly independent of the applied com-
pression stress levels in the experiments. In overall, the sim-
ulated results slightly overpredict the experimental values 
due to the fact that the material model used for calculating 

the stresses is elastic and therefore does not consider plastic 
processes (at the material point level inside the finite ele-
ments) that may take place in this type of experiment.

Figure 7 shows the free surface velocity from experiments 
and simulations at different impact velocities. As can be seen 
clearly, the FDEM model can match the overall trend of 
the experiments very well, especially for the lower velocity 
impacts. The granite material is expected to remain elastic at 
the low impact velocities of 91.5 m/s, 156.5 m/s, 249.1 m/s, 
and 364.5 m/s, but show significant inelasticity at the higher 
impact velocities, i.e., 561.3 m/s, 491.5 m/s, and 489.4 m/s. 

Fig. 5  Particle velocity versus time (left) and corresponding nodal velocity profile (right) for an impact velocity of 91.5 m/s at different times: 
3 µs, 9 µs, and 18 µs
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Thus, in order to capture the higher strain rate experiments, 
we must include the plasticity model in the finite element 
part of the FDEM, which will be discussed in the subsequent 
paper.

Figures 8 and 9 show the nodal velocities and the crack 
propagation in the granite plate (denoted by the white lines) 
under different impact velocities. As can be observed clearly, 
the higher impact velocities will generate more fractures in 
comparison with the lower ones. However, the spall region 
locations are independent to the loading rates. At different 
loading rates, the spall regions are always at about 7.6 mm 
above the bottom of the granite plate. If the flyer plate has 
the same density as the target plate, the spall region will 
happen right at the middle of the granite plate. Also, the gap 
of fractures can be observed around the middle of top-half 
across the spall region of target plate (Figs. 5 and 8). This 
might be due to the bending of top-half of target plate after 
forming spall region.

4.2  Effect of preexisting micro‑cracks

The aim of this study is to investigate the effect of preexist-
ing, or structural, cracks on dynamic fragmentation of gran-
ite. Because of the complex behavior of rock materials, the 
FDEM is employed relying upon an elasticity model with 
an isotropic damage model with softening law. The preexist-
ing cracks are introduced in the model by considering sets 
of elements that are fully damaged under both tensile and 
shear loading condition. The results from the analysis with 
power law distribution crack lengths and uniformly distrib-
uted orientations are compared in terms of fracture pattern 
and the VISAR plot.

The preexisting cracks with different lengths and orien-
tations are introduced in the numerical simulation. As can 
be clearly seen in Fig. 10, the number of preexisting cracks 
does not affect the VISAR plot significantly, except for the 
case of 2000 preexisting cracks. In this 2000-crack case, due 
to many damaged elements placed in the granite sample, 
the longitudinal wave slightly falls behind, which creates 
a relatively small time lag at the beginning of the VISAR 
plot (Fig. 10). However, it is shown in Figs. 11 and 12 that 
the fracture patterns change noticeably from the case of no 
cracks to the 2000-crack case. Several simulations with 
100 preexisting cracks but different initial crack orienta-
tions and locations were completed to study the effect of the 

Fig. 6  Particle velocity plot demonstrating the effect of the presence 
of a PMMA window

Table 3  Spall strength calculated from simulation and experiment

Experiment 
(MPa)

Simulation 
(MPa)

% Difference

Shot 1: V = 91.5 m/s 41 43.5 6.09
Shot 2: V = 156 m/s 46 46.67 1.45
Shot 3: V = 249.1 m/s 45 48.45 7.67
Shot 4: V = 356.1 m/s 47 50.15 6.7

Fig. 7  Particle velocity versus time plot. Comparison between 
simulations versus experiments, at impact velocities of 91.5  m/s, 
156.5 m/s, 249.1 m/s, and 364.5 m/s
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Fig. 8  Nodal velocity profile for different impact velocities: 91.5 m/s versus 156.5 m/s

Fig. 9  Nodal velocity profile for different impact velocities: 249.1 m/s versus 364.5 m/s
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prescribed distribution on the material response. However, 
there is no significant difference in the fracture pattern when 
changing the crack topology.

4.3  Effect of fracture energy

The aim of the work presented in this section is to inves-
tigate the effect of changes in the fracture energy of the 
material (as specified in the model, see Sect. 2.4) on the 
overall material response. The fracture energy is based on 
the approximation of the stress–strain curves for granite in 
direct tension and the tensile strength of the material. It can 
be clearly seen in Fig. 13 that for time < 7 µs changes in 
the fracture energy do not have a large effect on the VISAR 
signal. After 7 µs, the main cracks start to fully develop at 
the spall region in the sample, and at that point the effect of 
fracture energies is observed even though it is still relatively 
minor. Even though the VISAR plots are slightly different 
for various fracture energy cases, the crack patterns change 
dramatically. Figures 14 and 15 show that the lower the frac-
ture energy of the material is, the more fractures are gener-
ated in the granite plate. These results demonstrate that, for 
this type of problems, matching the VISAR does not provide 
enough constraints for calibrating a material model, as, for 
example, a histogram of the size or volume distribution of 
the fragments generated after the impact.

Fig. 10  Particle velocity plot demonstrating the effect of the presence 
of preexisting cracks in the simulation setup

Fig. 11  Nodal velocity profile demonstrating for the effect of preexisting cracks: no crack versus 1 crack
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5  Conclusions

In this work, an in-house implementation of the combined 
finite–discrete element method (HOSS) was employed to 
simulate flyer plate experiments on Westerly granite sam-
ples. The main conclusions obtained from this work are:

1. Simulated VISAR profiles show excellent matches to 
experimental VISAR profiles for an aluminum plate 
(flyer) impacting a granite plate. Multiple impact veloc-
ities were modeled and showed good matches for the 
spall strength calculations. The FDEM model does not 
need to calibrate many parameters like other pure con-
tinuum model or pure discrete models. All we need are 
the elastic material properties of granite, aluminum, and 
PMMA, such as Young modulus, density and Poisson 
ratio, and the strength properties, i.e., tensile and shear 
strengths and their associated specific fracture energies.

2. The number of preexisting cracks in the target plate 
does not affect the VISAR plot, but does considerably 
change the final fracture patterns in the granite sample. 
The number of preexisting cracks matters quite a lot in 
order to match the fracture patterns of the sample in the 
experiment.

3. The VISAR plot obtained from the simulations is practi-
cally indifferent to the changes on the specific fracture 
energies. However, that is not the case for the final frac-
ture patterns, which show a strong dependence on the 
specific fracture energy used in the model.

Overall, it is interesting to find that the common metric 
used to quantify the overall material response for these 
types of experiments, the VISAR signal, can be well 

Fig. 12  Nodal velocity profile demonstrating for the effect of preexisting cracks: 100 versus 2000 cracks

Fig. 13  Particle velocity plot demonstrating for the effect of changes 
in the fracture energy
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Fig. 14  Nodal velocity profile demonstrating for the effect of fracture energy

Fig. 15  Nodal velocity profile demonstrating for the effect of fracture energy
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matched, while the final fracture patterns can vary so 
widely based on changes to the specific fracture energy 
and/or preexisting crack network. This motivates the need 
for models, such as the FDEM, which can explicitly cap-
ture the fracturing behavior of the material in addition 
to common metrics that can be measured experimentally. 
Such approaches can ensure that the fracturing process 
itself is accurately modeled.

Acknowledgements The Los Alamos National Laboratory LDRD Pro-
gram (Project #20170103DR) supported this work. Technical support 
and computational resources from the Los Alamos National Laboratory 
Institutional Computing Program are highly appreciated. Our data are 
available by contacting the corresponding authors.

References

 1. Yuan F, Prakash V (2013) Plate impact experiments to investigate 
shock-induced inelasticity in Westerly granite. Int J Rock Mech 
Min Sci 60:277–287

 2. Prakash V (1995) A pressure-shear plate impact experiment for 
investigating transient friction. Exp Mech 35(4):329–336

 3. Zhao H, Gary G (1995) A three dimensional analytical solution of 
the longitudinal wave propagation in an infinite linear viscoelastic 
cylindrical bar. Application to experimental techniques. J Mech 
Phys Solids 43(8):1335–1348

 4. Liu H, Kou S, Lindqvist P-A, Tang C (2002) Numerical simula-
tion of the rock fragmentation process induced by indenters. Int J 
Rock Mech Min Sci 39(4):491–505

 5. Wang S, Sloan S, Liu H, Tang C (2011) Numerical simulation of 
the rock fragmentation process induced by two drill bits subjected 
to static and dynamic (impact) loading. Rock Mech Rock Eng 
44(3):317–332

 6. Saksala T (2010) Damage–viscoplastic consistency model with 
a parabolic cap for rocks with brittle and ductile behavior under 
low-velocity impact loading. Int J Numer Anal Methods Geomech 
34(13):1362–1386

 7. Thuro K, Schormair NJ (2008) Fracture propagation in anisotropic 
rock during drilling and cutting. Geomechanik und Tunnelbau 
1(1):8–17

 8. Forquin P, Hild F (2010) A probabilistic damage model of the 
dynamic fragmentation process in brittle materials. In: Advances 
in applied mechanics, vol 44. Elsevier, pp 1–72

 9. Rougier E, Knight EE, Broome ST, Sussman AJ, Munjiza A 
(2014) Validation of a three-dimensional finite-discrete element 
method using experimental results of the split Hopkinson pressure 
bar test. Int J Rock Mech Min Sci 70:101–108

 10. Shockey DA, Curran DR, Seaman L, Rosenberg JT, Petersen 
CF (1974) Fragmentation of rock under dynamic loads. In: 

International journal of rock mechanics and mining sciences and 
geomechanics abstracts, vol 8. Elsevier, pp 303–317

 11. Munjiza AA (2004) The combined finite-discrete element method. 
Wiley, Hoboken

 12. Munjiza AA, Knight EE, Rougier E (2011) Computational 
mechanics of discontinua. Wiley, Hoboken

 13. Munjiza AA, Rougier E, Knight EE (2014) Large strain finite 
element method: a practical course. Wiley, Hoboken

 14. Munjiza A (1992) Discrete elements in transient dynamics of frac-
tured media. Swansea University, Swansea

 15. Gao K, Euser BJ, Rougier E, Guyer RA, Lei Z, Knight EE, Car-
meliet J, Johnson PA (2018) Modeling of stick-slip behavior in 
sheared granular fault gouge using the combined finite–discrete 
element method. J Geophys Res Solid Earth 123(7):5774–5792

 16. Lei Z, Rougier E, Knight EE, Munjiza AA, Viswanathan H (2016) 
A generalized anisotropic deformation formulation for geomate-
rials. Comput Part Mech 3(2):215–228. https ://doi.org/10.1007/
s4057 1-015-0079-y

 17. Munjiza A, Rougier E, John NWM (2006) MR linear contact 
detection algorithm. Int J Numer Methods Eng 66(1):46–71. https 
://doi.org/10.1002/nme.1538

 18. Munjiza A, Andrews K (1998) NBS contact detection algo-
rithm for bodies of similar size. Int J Numer Methods Eng 
43(1):131–149

 19. Knight E, Rougier E, Munjiza AJP, LA-UR-13-23409 (2013) 
LANL-CSM: Consortium proposal for the advancement of 
HOSS.05-09

 20. Rougier E, Knight E, Munjiza AJP, LA-UR-13-23422 (2013) 
LANL-CSM: HOSS-MUNROU Technology Overview.05-10

 21. Knight E, Rougier E, Lei Z (2015) Hybrid optimization software 
suite (HOSS)-educational version. In: Technical report LA-UR-
15-27013. Los Alamos National Laboratory

 22. Rougier E, Munjiza AA (2010) MRCK_3D contact detection algo-
rithm. In: Paper presented at the proceedings of 5th international 
conference on discrete element methods. London

 23. Knight E, Rougier E, Lei Z (2015) Hybrid optimization software 
suite (HOSS)—educational version. Technical Report LA-UR-15-
27013, Los Alamos National Laboratory

 24. Saadati M, Forquin P, Weddfelt K, Larsson PL, Hild F (2015) A 
numerical study of the influence from pre-existing cracks on gran-
ite rock fragmentation at percussive drilling. Int J Numer Anal 
Methods Geomech 39(5):558–570

 25. Tatone BSA, Grasselli G (2015) A calibration procedure for 
two-dimensional laboratory-scale hybrid finite–discrete element 
simulations. Int J Rock Mech Min Sci 75(3):56–72. https ://doi.
org/10.1016/j.ijrmm s.2015.01.011

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/s40571-015-0079-y
https://doi.org/10.1007/s40571-015-0079-y
https://doi.org/10.1002/nme.1538
https://doi.org/10.1002/nme.1538
https://doi.org/10.1016/j.ijrmms.2015.01.011
https://doi.org/10.1016/j.ijrmms.2015.01.011

	Numerical analysis of flyer plate experiments in granite via the combined finite–discrete element method
	Abstract
	1 Introduction
	2 The combined finite–discrete element method (FDEM)
	2.1 Governing equations
	2.2 Finite strain-based formulation
	2.3 Contact detection
	2.4 Damage modeling

	3 Model setup
	4 Simulation results
	4.1 Model evolution and validation with experiment
	4.2 Effect of preexisting micro-cracks
	4.3 Effect of fracture energy

	5 Conclusions
	Acknowledgements 
	References




