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Plate motion near the fault gouge layer, and the elastic interplay between the gouge layer and the plate 
under stick-slip conditions, is key to understanding the dynamics of sheared granular fault systems. 
Here, a two-dimensional implementation of the combined finite-discrete element method (FDEM), which 
merges the finite element method (FEM) and the discrete element method (DEM), is used to explicitly 
simulate a sheared granular gouge fault system. We focus on investigating the influence of normal load, 
driving shear velocity and plate stiffness on the velocities and displacements in the direction parallel to 
the shear direction (x-direction) measured at locations on the upper and lower plates just adjacent to 
the gouge. The simulations show that during slip phases the magnitudes of the measured velocities on 
the upper and lower plates are proportional to the normal load and may be inversely proportional to 
the square root of the plate’s shear modulus. Whereas, the driving shear velocity does not show distinct 
influence on the measured velocities. Additionally, large slip velocities are generally associated with large 
macroscopic friction coefficient drops. For the models subjected to smaller normal loads, larger shear 
velocities and with stiffer shear plates, the same magnitude of slip velocity could cause a larger drop 
of macroscopic friction coefficient. During stick phases, the velocities of the upper and lower plates are 
respectively slightly greater and slightly smaller than half of the driving shear velocity and are both in 
the same direction of shear. The shear strain rate of the gouge is calculated from this velocity difference 
between the upper and lower plate during stick phases and thus the gouge effective shear modulus can 
be calculated. The results show that the gouge effective shear modulus increases proportionally with 
normal load, while the influence of shear velocity and plate stiffness on gouge effective shear modulus 
is minor. The simulations address the dynamics of a laboratory-scale fault gouge system and may aid in 
revealing the complexities of earthquake frictional dynamics.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

The nucleation and growth of earthquakes are driven by fault 
friction. A better understanding of friction would therefore advance 
dynamical modeling of earthquakes. The fault gouge, an ensemble 
of solid granular particles created by comminution – the frag-
mentation and wearing of fault blocks – plays a key role in the 
frictional stability of a fault (Dorostkar et al., 2017b; Marone et al., 
1990). Therefore, stick-slip cycles (or simply stick-slip) in sheared 
granular fault systems have been intensively studied in recent 
years both in laboratory experiments and numerical simulations 
(e.g., Gao et al., 2018; Geller et al., 2015; Johnson and Jia, 2005; 
Johnson et al., 2008; Marone, 1998; Marone et al., 1990; Scuderi 
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et al., 2017a). In these studies, the model employed generally con-
sists of granular gouge compressed and sheared by confining plates 
which play the role of fault blocks. However, significant attention 
has been paid to gouge kinematics and dynamics, with few de-
tails being reported regarding the motion of the plates, especially 
adjacent to the gouge. This near-gouge interaction with plate mo-
tion not only directly controls the output of acoustic signals that 
may serve as harbingers for stick-slip events, but also reflects the 
physical and dynamic properties of the fault system such as the 
laboratory equivalence of seismic moment and characteristics of 
the radiated acoustic waves (Gao et al., 2019; Jackson and McKen-
zie, 1988; Johnson et al., 2013; Rivière et al., 2018; Rouet-Leduc 
et al., 2018, 2017; Siman-Tov and Brodsky, 2018; Taylor and Brod-
sky, 2019). Therefore, investigating stick-slip induced near gouge 
plate motion in sheared granular fault system is key to improving 
our understanding of the complex mechanisms of fault friction and 
may also shed light on the scale of ground motion and earthquake 
hazard.
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Numerical simulation is widely used to model single fault or 
fault patches simply because of its ease of implementation and 
capability of analyzing a granular gouge fault system at a level 
of spatial and temporal resolution not accessible experimentally 
(de Arcangelis et al., 2011). Among the many numerical meth-
ods available, the discrete element method (DEM) has been the 
most widely applied (e.g., Dorostkar et al., 2017a, 2017b; Ferdowsi 
et al., 2013; Griffa et al., 2011; Mair and Hazzard, 2007; Wang 
et al., 2017). In classic DEM models, the granular fault gouge is 
commonly represented by a pack of rigid particles, and the repre-
sentation of the confining plates is simplified by a set of bonded 
particles (Abe and Mair, 2005; Dorostkar et al., 2017b; Ferdowsi et 
al., 2014; Griffa et al., 2013; Mair and Abe, 2008) (e.g., Fig. S1a of 
the Supplementary Material). As a result, by using DEM it is chal-
lenging to capture detailed deformation and motion within both 
the particles and plates (Dratt and Katterfeld, 2017; Ma et al., 
2016). In particular, in DEM models, because the shearing plates 
behave as rigid bodies, the spatial variation of plate motion along 
the gouge in response to stick-slip cycles is difficult to acquire.

From a computational mechanics viewpoint, a granular fault 
system is essentially a combination of continua (each individual 
plate and particle) and discontinua (particle-particle and particle-
plate interactions). Considering this, a numerical tool such as the 
combined finite-discrete element method (FDEM) (Munjiza, 1992, 
2004; Munjiza et al., 2011, 2014), which merges finite element 
based analysis of continua with discrete element based analysis 
of discontinua, provides a natural solution for such a problem. In 
an FDEM realization of the granular fault system (Fig. S1b), each 
plate and each particle are represented by discrete elements, which 
provide the means for tracking of their motion and interactions 
with neighboring objects. Furthermore, each discrete element is 
discretized into finite elements allowing for describing its defor-
mation in response to external forces. Therefore, by utilizing FDEM 
one can obtain an explicit representation of a granular fault system 
and thus be capable of obtaining detailed information regarding 
internal gouge behavior and gouge-plate motion during the full 
stick-slip cycle.

In this paper, based on the FDEM simulations of a granular 
fault system, we explore the motion of the gouge and plates dur-
ing multiple stick-slip cycles. This analysis is conducted for models 
featuring different plate stiffness and subjected to different normal 
loads and shear velocities. We first provide a brief introduction to 
the numerical method including the theory of FDEM and model 
setup. Then the motion of both the upper and lower plates in stick 
and slip phases in terms of velocity and displacement in directions 
parallel to the shear direction (x-direction) are analyzed. The in-
fluence of normal load, shear velocity and plate stiffness on the 
plate motion is demonstrated and the gouge effective shear mod-
ulus interpreted from the plate motion is presented. We discuss a 
possible scaling relationship for the plate motion and gouge effec-
tive shear modulus with respect to normal load, shear velocity and 
plate stiffness and conclude.

2. Numerical methods

2.1. FDEM in a nutshell

The FDEM was originally developed by Munjiza in the early 
1990s to simulate the material transition from continuum to dis-
continuum (Munjiza, 1992). The essence of this method is to 
merge the algorithmic advantages of DEM with those of the finite 
element method (FEM). The main theory of FDEM involves the al-
gorithms of governing equations, deformation description, contact 
detection, and contact interaction (Lei et al., 2016; Munjiza et al., 
2006).
The general governing equation of the FDEM is (Munjiza, 2004)

Mẍ + Cẋ = f, (1)

where M is the lumped mass matrix, C is the damping matrix, x is 
the displacement vector, and f is the equivalent force vector acting 
on each FEM node. This equation solves the dynamic response of 
a solid material subjected to external forces and satisfies the mass 
and momentum conservation automatically. An explicit time inte-
gration scheme based on a central difference method is employed 
to solve Eq. (1) with respect to time to obtain the transient evolu-
tion of the system. Deformation of finite elements is described by a 
multiplicative decomposition-based formulation, which allows for 
a detailed analysis of material deformation (Munjiza et al., 2014). 
The contact detection between discrete elements is conducted us-
ing the MRCK (Munjiza-Rougier-Carney-Knight) algorithm (Rougier 
and Munjiza, 2010), which determines whether any two given ele-
ments, one called the contactor and the other one the target, share 
at least one search cell. After processing the contact detection, a 
list that contains all the pairs of elements potentially in contact 
is established and sent for contact interaction analysis. A penalty 
function based contact interaction algorithm is used to calculate 
the contact forces between contacting elements (Munjiza, 2004; 
Munjiza et al., 2011). Detailed calculation of normal and tangential 
contact forces is demonstrated in Text S1 of the Supplementary 
Material.

It is beyond the scope of the present paper to provide a com-
plete description of the above principles; however, details of these 
can be found in FDEM monographs (Munjiza, 2004; Munjiza et 
al., 2011, 2014). FDEM allows explicit geometric and mechanical 
realization of systems involving both continua and discontinua, 
which makes it superior to both FEM and DEM. Since its inception 
(Munjiza, 1992), FDEM has proven its computational efficiency and 
reliability, and has been extensively used in a wide range of en-
deavors in both industry and academia (Euser et al., 2019; Gao et 
al., 2018; Lei and Gao, 2018; Lei et al., 2019; Okubo et al., 2019; 
Rougier et al., 2019). Additionally, benefiting from the recent im-
plementation of a large-strain large-rotation formulation and grand 
scale parallelization in FDEM by the Los Alamos National Labora-
tory (Lei et al., 2014; Munjiza et al., 2014), the FDEM software 
package – HOSS (Hybrid Optimization Software Suite) (Knight et 
al., 2015; Munjiza et al., 2013) – offers a powerful tool to study 
the behavior of sheared granular fault system.

2.2. Model setup

Fig. 1a illustrates the geometry of the FDEM model, which 
is based on the laboratory photoelastic experiment conducted by 
Geller et al. (2015). The model uses two-dimensional plane stress 
conditions and consists of 2,817 cylindrical particles confined be-
tween two identical deformable plates. The diameter of the parti-
cles is either 1.2 or 1.6 mm, and they are randomly placed between 
the plates. Each plate has dimensions of 570 mm × 250 mm in 
width and height, respectively. Two stiff bars are attached to the 
bottom end of the lower plate and to the top end of the upper 
plate on which the normal load P and shear velocity V are ap-
plied, respectively. At the interfaces between the plates and the 
particles, fault roughness is simulated as a series of half-circular 
shaped “teeth” (Fig. 1a). The teeth diameter and the separation be-
tween them are 1.6 mm and 0.8 mm, respectively. A number of 
“sensor” points are set on the centers of both the upper and lower 
teeth, close to the interface with the gouge, to track the motion of 
both plates during stick-slips. To avoid edge effects, a portion com-
prising around 80 mm on both the left and right sides of the gouge 
are not considered in the plate motion analysis, and thus the infor-
mation collected from a total of 286 sensors (143 on each plate) is 
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Fig. 1. Model setup and selection of key simulation parameters. (a) FDEM model of the granular fault system and the sensor locations for plate motion monitoring. (b) 
Illustration of the three groups of models for examining the influence of normal load P (first group, blue), shear velocity V (second group, red) and plate shear modulus G
(third group, magenta) on plate motion; the common parameter combination of the three model groups is marked as black at the origin. (For interpretation of the colors in 
the figure(s), the reader is referred to the web version of this article.)

Table 1
Material and numerical simulation parameters.

Property Value Property Value

Particle diameter 1.2 or 1.6 mm Stiff bar density 2,800 kg/m3

Particle density 1,150 kg/m3 Stiff bar Young’s modulus 30 GPa
Particle Young’s modulus 0.4 GPa Stiff bar Poisson’s ratio 0.33
Particle Poisson’s ratio 0.4 Foam density 1,150 kg/m3

Particle-particle friction coefficient 0.15 Foam Young’s modulus 1 MPa
Number of particles 2,817 Foam Poisson’s ratio 0.4
Main plate density 1,150 kg/m3 Contact penalty 4 GPa
Main plate Poisson’s ratio 0.49 Time step 1.0E-4 ms
Particle-plate friction coefficient 0.15
used in this work. This data collection reflects the dynamic evolu-
tion of a section of about 340 mm in length located in the middle 
of the gouge (Fig. 1a).

The granular fault gouge is consolidated by first moving the 
top and bottom stiff bars towards each other to ensure the par-
ticles are well contacted. After consolidation, the gouge thickness 
and length are approximately 11.7 mm and 500 mm, respectively. 
Then the top stiff bar begins shearing, i.e., displacing horizontally 
towards the right-hand side, with a constant horizontal velocity 
V , while the normal load P on the bottom stiff bar is held con-
stant throughout the simulation. During the shearing stage, the top 
stiff bar is allowed to move only in the x-direction and the bot-
tom stiff bar is allowed to move only in the y-direction. The main 
simulation parameters are tabulated in Table 1, while a detailed 
illustration of the model geometry and parameter selection is pre-
sented in Text S2 of the Supplementary Material. The simulation 
results were compared and calibrated against the laboratory exper-
iments conducted by Geller et al. (2015) in our previous work (Gao 
et al., 2018) in which we calculated the laboratory equivalence of 
seismic moment based on the sensor displacements recorded along 
the boundary between the shearing plates and fault gouge. The 
simulations show good agreement with the laboratory results and 
thus demonstrate the capability and accuracy of FDEM for such 
simulation.

In the following simulations, a shear velocity V = 5.0E-4 m/s 
is selected first, and for the models with plate Young’s modulus 
E = 2.5 MPa (equivalent to a plate shear modulus of G = G0 ≈ 0.84
MPa), a series of normal loads P ranging from 12 kPa to 44 kPa 
with increments of 8 kPa are used to investigate the influence of 
normal load on plate motion. Then, to explore the effect of shear 
velocity, for the models with the same plate shear modulus G0 and 
subjected to P = 28 kPa, another three shear velocities V = 1.0E-4, 
2.5E-4 and 1.0E-3 m/s are employed. Finally, for the models sub-
ject to P = 28 kPa and V = 5.0E-4 m/s, four additional plate shear 
moduli G = 2G0, 4G0, 20G0 and 80G0 (equivalent to plate Young’s 
moduli of E = 5, 10, 50 and 200 MPa, respectively) are employed 
to further examine the influence of plate stiffness on simulation 
results. Here, we only focus on the effect of normal load, shear 
velocity and plate stiffness on plate motion, with all other param-
eters held constant for all models. All combinations of normal load, 
shear velocity and plate stiffness used here are within the domain 
that guarantees repetitive stick-slip events. The parameter combi-
nations of the three groups of models are summarized in Fig. 1b.

The simulations use a time step of 1.0E-4 ms, and each model 
is run for roughly 3.0E+8 time steps with a total shearing time 
of approximately 30,000 ms. Each model reaches steady state af-
ter the first 3,000 ms, approximately. Because of this, in this work, 
the data for the analysis was collected after 5,000 ms of simula-
tion time. The shear and normal forces between the particles and 
the upper and lower plates, as well as the x velocity and displace-
ment of the 143 pairs of sensors, are recorded every 1 ms. This 
time step interval for output recording is chosen carefully through 
a series of comparisons by considering the resolution of output 
as well as the computational cost. The particle-plate shear and 
normal forces are calculated by first resolving the normal and tan-
gential contact forces between each particle-plate contact pair into 
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Fig. 2. Comparison between the average x velocity at each output step at locations adjacent to the plate-gouge interfaces, and the plate-gouge macroscopic friction coefficient. 
Upper panel (left y-axis): time series of average x velocity of the 143 sensors on the upper (blue) and lower (red) plate, respectively; the inset illustrates the average velocity 
difference between the upper and lower plates during the interevent (stick) phases. Lower panel (right y-axis): time series of macroscopic friction coefficient; the green lines 
indicate the approximately constant slope of the macroscopic friction coefficient during the interevent time.
x and y directions and then integrating them respectively along 
the particle-plate interfaces. The ratio of the shear to normal force 
is then calculated as the macroscopic friction coefficient between 
the plates and granular fault gouge.

3. Simulation results

3.1. General characteristics of plate motion

The x velocities at the 143 sensor points on each of the up-
per and lower plate are averaged at each output step (every 1 ms). 
The time series of the averages for the model with the common 
parameter combination indicated by the black dot at the origin 
in Fig. 1b (i.e., P = 28 kPa, V = 5.0E-4 m/s, and G = G0 ≈ 0.84
MPa) are presented in Fig. 2. The average x velocity of the up-
per plate sensors exhibits primarily positive values, whereas the 
lower plate sensors generally exhibit the opposite motions (i.e., 
the upper and lower x velocities are anti-correlated). To facilitate 
analysis between the plate motion and the stick-slips in the gran-
ular fault system, we also plot in Fig. 2 the change of gouge-plate 
macroscopic friction coefficient with respect to time. During stick 
phases, the macroscopic friction coefficient increases in an approx-
imately linear manner. At the end of a stick phase, a rapid drop 
of macroscopic friction coefficient, which marks a slip event, can 
be observed. The temporal variations of both the upper and lower 
plate average x velocities match well with the gouge-plate macro-
scopic friction coefficient. When slip occurs, because of the partial 
contact loss between plates and particles, the bottom portion of 
the upper plate lurches to the right and the top portion of the 
lower plate resets towards its original position to the left. As a 
result, the upper and lower gouge-plate interfaces have a simul-
taneous sudden increase of x velocity magnitude but in opposite 
directions. Particularly, large x velocity magnitudes are generally 
associated with large macroscopic friction coefficient drops. Ad-
ditionally, the average x velocities of the upper and lower plate 
sensors with respect to time are nearly symmetric, manifested by 
a spike at the bottom of the upper plate towards the right, at-
tended by a spike of similar magnitude at the top of the lower 
plate toward the left. Whereas during the stick phases, a gradual 
increase of macroscopic friction coefficient is regularly accompa-
nied with a constant average x velocity around 2.5E-4 m/s (half 
of the shear velocity V ) in the direction of shear for both upper 
and lower plates (see inset of Fig. 2). All other models exhibit sim-
ilar characteristics regarding the x velocity in both stick and slip 
phases.

To further interpret plate motion, we examine the average x
displacements (D̄x) of the 143 upper and 143 lower plate sensors 
at each output step, and their time series are presented in Fig. 3a. 
The average x displacements of upper plate sensors move from 0 to 
13.5 mm approximately uniformly in time with an average velocity 
V̄ ≈ 13.5/27000 = 5.0E-4 m/s, which is equal to the driving shear 
velocity V on the upper plate. The average x displacements of the 
lower plate sensors are x = 0, i.e., the lower plate does not on 
average move. During stick phases, the upper and lower plates are 
locked and move together with a velocity of V /2. During slip time, 
the top of the lower plate retreats to x ≈ 0 and the bottom of 
the upper plate lurches to a new position atop the lower plate. 
The upper and lower plates are then locked anew and repeat the 
stick-slip cycle, as is demonstrated in the cartoon in Fig. 3b. In 
the following two sections, we give a detailed analysis of the plate 
motion in terms of x velocities at the sensors in slip and stick 
phases, respectively, and investigate how they are influenced by 
the normal load, shear velocity and plate stiffness.

3.2. Plate motion during slip phases

Because the x velocities of the upper and lower plate sensors 
during slip phases have almost the same magnitudes but occur 
in opposite directions, we use a “couple velocity” of each corre-
sponding upper and lower sensor pair to explore the plate motion 
by considering the trends of both velocities along the gouge-plate 
interfaces. The x couple velocity for each sensor pair in a specific 
output time step is defined as

V C
xi

= V U
xi

− V L
xi

2
, (2)

where the superscripts “C”, “U ” and “L” denote “couple”, “upper” 
and “lower”, respectively, and i = 1, 2, . . . 143 is the sensor num-
ber counted from left to right along the gouge for both the upper 
and lower plates. Since here we focus on plate motions during slip 
phases, only V C

x ≥ 1.0E-3 m/s are considered. The complemen-
tary cumulative distribution functions (CCDFs) of V C

x for the three 
groups of models are presented in Fig. 4. The CCDF gives the prob-
ability of an x couple velocity larger than or equal to a certain 
magnitude, and thus provides a useful tool for comparing the in-
fluence of different parameters on the frequency and magnitude 
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Fig. 3. (a) Time series of average x displacement of the 143 sensors on the upper (blue) and lower (red) plate, respectively; the two green auxiliary dotted lines indicate that 
the displacements having zero and V /2 velocities, respectively. (b) Cartoon illustration of plate motion during stick and slip phases.

Fig. 4. Complementary cumulative distribution functions (CCDFs) of the x couple velocity during slip phases for the (a) first, (b) second and (c) third group of models shown 
in Fig. 1b.
of slip events, especially on the large ones. As can be seen from 
Fig. 4, the largest x velocities of the three groups of models are 
approximately located around 0.1 m/s, and could be as large as 2-
3 orders of the shear velocity. As the normal load increases, larger 
V C

x is generated, which indicates that the system is more respon-
sive during slips when subjected to higher normal loads (Fig. 4a). 
The change of shear velocity seems to have no significant influ-
ence on the plate motion along the gouge-plate interfaces during 
slip phases, as is manifested by the nearly overlapping CCDFs in 
Fig. 4b. However, stiffer plates suppress local vibrations and result 
in a relatively “quiet” system with smaller x velocity magnitudes 
during slip (Fig. 4c).

The x couple velocity correlates well with the drop of macro-
scopic friction coefficient. To compare the two, we first calculate 
the mean of the 143 x couple velocities at each output step, and 
then for the time intervals during slip events we calculate the 
drop of macroscopic friction coefficient and also average the cal-
culated mean couple velocities for adjacent output time steps. The 
results are plotted in the top row of Fig. 5, which demonstrates 
that the magnitude of macroscopic friction coefficient drop gener-
ally increases with the increasing x couple velocity. Moreover, the 
changing ratio between the macroscopic friction coefficient drop 
and x couple velocity (i.e., the slope of the fitted lines in Fig. 5) in-
creases with the decreasing normal load (Fig. 5a). In other words, 
for the models with smaller normal loads, the same magnitude 
of slip could induce a larger macroscopic friction coefficient drop 
when compared with the models under larger normal loads. Simi-
lar trends can be found for the models with larger shear velocities 
(Fig. 5b, although relatively small) and stiffer plates (Fig. 5c).

To better demonstrate the scale of macroscopic friction coeffi-
cient drop and to facilitate comparison, we also plot in the bottom 
row of Fig. 5 their CCDFs for the three model groups. The macro-
scopic friction coefficient drop increases approximately with the 
decreasing normal load as well as the increasing shear velocity 
and plate stiffness. We suspect this may due to the characteristics 
of our model: the plates are significantly softer than the particles. 
When subjected to the prescribed normal loads, apparent defor-
mations on the plates along the gouge-plate boundary will occur, 
and thus result in a series of well-contacted areas at each contact 
point between the plate and particles. Particularly, for the models 
subjected to larger normal loads, when slip occurs it will be dif-
ficult for these well-contacted points to fully lose contact. While 
for models subjected to smaller normal loads, some contact points 
along the gouge-plate boundary may easily lose contact, and thus 
yield a larger drop of macroscopic friction coefficient when com-
pared with the larger normal load models (Fig. 5d). Although, here, 
the influence of normal load on friction coefficient drop is not very 
distinct. For a similar reason, in terms of the plate stiffness, rela-
tively small contact areas will occur at each contact point along 
the gouge-plate boundary when stiffer plates are employed, and 
thus when slip occurs, larger friction coefficient drops could be 
observed (Fig. 5f). Furthermore, large shear velocity weakens the 
contacts between the plate and particles and will yield a more sig-
nificant friction coefficient drop during slip phases (Fig. 5e).

3.3. Plate motion during stick phases and interpretation of gouge 
effective shear modulus

To examine the plate motion during stick phases, we first plot 
in Fig. 6a the probability density functions (PDFs) of all the out-
put x velocities of the 143 sensor points on each of the upper and 
lower plates for the model with the common parameter combina-
tions indicated by the black dots shown in Fig. 1b. The markers 
with the same color as the line represent the corresponding max-
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Fig. 5. Top row: Relationship between the drop of macroscopic friction coefficient and the corresponding x couple velocity for the (a) first, (b) second and (c) third group of 
models demonstrated in Fig. 1b; the lines are linear fits between the friction coefficient drop and the x couple velocity to facilitate comparison. Bottom row: Complementary 
cumulative distribution functions (CCDFs) of the macroscopic friction coefficient drop during slips for the (d) first, (e) second and (f) third group of models.
imum and minimum x velocities. As can be seen from Fig. 6a, 
the x velocities have both positive and negative values, and pos-
itive velocities with large magnitude are mainly seen on the upper 
plate, while negative velocities with large magnitude mostly occur 
on the lower plate. This is consistent with the signs of average x
velocities shown in Fig. 2. The x velocities of the sensors on both 
plates are highly concentrated around 2.5E-4 m/s (i.e., V /2, see 
inset of Fig. 6a), and the modes of PDFs shown in the inset re-
flect plate motions during the stick phases. A quick comparison 
reveals that during the stick phases, the upper plate sensor x ve-
locities are slightly greater than V /2 and the lower plate sensor 
x velocities are slightly less than V /2, which is in response to 
the average x velocity difference between the two plates shown 
in the inset of Fig. 2. This x velocity difference is evidence that the 
gouge is experiencing a growing shear strain necessary to support 
the growing shear stress in the system. Specifically, during stick 
phases the shear stress in the system is growing steadily (as in-
dicated in Fig. 2), and the gouge must support the growing shear 
stress; it does so by developing a growing shear strain, i.e., the 
upper plate in places adjacent to the gouge moves slightly faster 
than that of the lower plate. The plate motions of other models, 
shown in Figs. S3-S5 in the Supplementary Material, manifest sim-
ilar characteristics.

The velocity difference between the upper and lower plate sen-
sors, i.e.,

dV S
x = V U ′

x − V L′
x , (3)

indicates the rate of shear strain growth across the gouge, where 
the superscript “S” denotes “stick”, and V U ′

x and V L′
x represent 

the upper and lower plate x velocity during stick phases (i.e., the 
modes of PDFs of x velocities shown in Fig. 6a), respectively. We 
calculate dV S

x for the three groups of models and the results are 
presented in Fig. 6b-d: dV S

x decreases with the increasing normal 
load, and increases with the increasing shear velocity and plate 
shear modulus. The shear strain rate can be further calculated by

γ̇ = dγ

dt
= dV S

x

H̄
, (4)

where H̄ is the average gouge thickness in each model, and here 
H̄ ≈ 11.7 mm. As can be interpreted from Fig. 6b-d, large nor-
mal loads suppress the shear strain rate, which reveals that during 
stick phases the gouge is more compact and the upper and lower 
plates are moving in a more synchronized fashion (i.e., smaller rel-
ative velocity difference) when the system is compressed by larger 
normal loads. However, a faster shear velocity increases the rela-
tive velocity difference between the upper and lower plates and 
thus yields a larger shear strain rate. When the shear plates are 
stiffer, deformation is limited inside the plates and thus, the bot-
tom part of the upper plate moves in an almost similar manner as 
the top part in which the constant shear velocity is enforced; since 
the bottom part of the lower plate is fixed in the x-direction, more 
sliding and particle rolling will occur during the shear and thus a 
larger shear strain rate is generated. Particularly, the plate stiffness 
has higher notable influence on the shear strain rate than the nor-
mal load and shear velocity, as is demonstrated by the larger dV S

x
in Fig. 6d when compared with Fig. 6b & c.

Additionally, as mentioned earlier and indicated by the green 
lines in Fig. 2, the macroscopic friction coefficient between the 
gouge and plates also increases at an approximately uniform rate 
in time. This indicates the shear stress rate applied on the gouge, 
as we have

τ̇ = dτ

dt
= P

dμ

dt
, (5)

where τ is the shear stress between gouge and plates and μ is the 
macroscopic friction coefficient. Thus, we obtain the effective shear 
modulus of the gouge for each model in an approximation manner 
using
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Fig. 6. Analyses of x velocity of the 143 sensor pairs during stick phases. (a) Probability density functions of all output x velocities of the 143 sensor pairs on the upper and 
lower plate, respectively, for the model with the common parameter combination of normal load, shear velocity and plate shear modulus shown in Fig. 1b; the markers with 
the same color as the line represent the corresponding maximum and minimum values. The velocity difference between the upper and lower plates during stick phases for 
the (a) first, (b) second and (c) third group of models demonstrated in Fig. 1b.

Fig. 7. Gouge effective shear modulus of the (a) first, (b) second and (c) third group of models demonstrated in Fig. 1b.
G = dτ

dγ
= τ̇

γ̇
. (6)

Although the granular gouge may not behave in an exact elastic 
manner during the stick phases (as indicated by the small friction 
drops in Fig. 2), here, the calculated effective gouge shear modu-
lus reflects the mechanical behavior of the gouge under different 
normal load, shear velocity and plate shear modulus. The gouge ef-
fective shear moduli of the three groups of models are calculated 
and presented in Fig. 7. These effective shear moduli are gener-
ally within the range between 0.2 and 0.9 MPa. The increasing 
normal load enhances the effective shear modulus of the granular 
gouge (Fig. 7a). While the gouge effective shear modulus reduces 
when subjected to larger shear velocity (Fig. 7b). A stiffer shear 
plate could increase the gouge effective shear modulus (Fig. 7c). 
All these may be attributed to the influence of normal load, shear 
velocity and plate shear modulus on the stress chain distributions 
inside the granular gouge (Gao et al., 2019). Specifically, a larger 
normal load intensifies the stress chain force formed by adjacent 
particle interactions and thus increases the gouge effective shear 
modulus. Likewise, a stiffer shearing plate can more effectively 
transfer the external normal load to the gouge and strengthen par-
ticle contacts. However, a faster shear velocity may weaken the 
stress chain network and reduce the gouge effective shear mod-
ulus. Furthermore, the effective shear modulus increases approxi-
mately linearly with the increasing normal load, e.g., a nearly four 
times increase of normal load (from 12 kPa to 44 kPa) results in a 
roughly four times rise of gouge effective shear modulus (Fig. 7a). 
When compared with the normal load, the effect of shear velocity 
and plate shear modulus on gouge effective shear modulus is less 
significant. For instance, a ten-times increase of shear velocity only 
results in a less than 10% reduction of gouge shear modulus, and 
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Fig. 8. Scaling of the results related to plate motion in stick and slip phases: scaling of CCDFs of the x couple velocity during slips for the (a) first, (b) third group of models; 
(c) scaling of gouge effective shear modulus for the first group of models.
similarly, the gouge effective shear modulus only witnesses 10% 
increases when the plate stiffness is increased by 80 times.

4. Discussion

In summary, the two main characteristics derived here, i.e., the 
x couple velocity which represents the plate motion during slip 
phases and the gouge effective shear modulus interpreted from the 
motion of the plates during stick phases, may be significant for 
revealing the fault mechanics. As discussed above, these two char-
acteristics are influenced by the normal loads, shear velocities and 
plate stiffness. First, we find that for the first group of models, after 
dividing the x couple velocity at slips by the corresponding normal 
load, the resulting CCDFs collapse upon one other (Fig. 8a). This 
reveals that the plate motion during slip phases is proportional to 
the normal load acting on the system. For the second group of 
models, the four shear velocities do not have a very distinct in-
fluence on the plate motion during slips (see Fig. 4b). Regarding 
the influence of different plate shear modulus, we found that the 
CCDFs of the x couple velocity of the third group of models mul-
tiplied by 

√
G seems reasonably close (Fig. 8b). This indicates that 

the plate motion during slip phases may be inversely proportional 
to the square root of plate shear modulus.

Similar to the effect of normal load on plate motion during 
slip phases, the gouge effective shear modulus also scales with 
the normal load (Fig. 8c), i.e., the gouge shear modulus increases 
proportionally with the normal load. Therefore, we suspect that 
the geometrical structures of stress chains that carrying forces are 
similar for all models with different normal loads, and expect the 
spectrum of stresses to have amplitudes controlled by the normal 
load. This needs further detailed investigation; however, although 
the shear velocity and plate stiffness do influence the gouge stiff-
ness, e.g., larger shear velocity could weaken the gouge effective 
shear modulus and a stiffer plate may enhance the gouge effective 
shear modulus, their influence is minor, especially when compared 
with the influence of normal load. Through the above analyses, 
we speculate that the normal load determines the structure of 
elastic elements in the gouge that give the system its frictional 
properties. In other words, the normal load determines the nature 
and strength of the stress chains. Whereas the shear velocity and 
plate stiffness are the driving system which determines the rate at 
which the elastic elements in the gouge have their strength tested.

It is worth mentioning that the trend of plate motion (indicated 
by x couple velocity here) with respect to normal load and plate 
stiffness are consistent with those discussed in the existing litera-
ture (e.g., Lapusta and Rice, 2003; Rice, 1983; Rubin and Ampuero, 
2005; Ruina, 1983; Scuderi et al., 2017b), i.e., the plate motion 
increases with increasing normal load and decreasing plate shear 
modulus. However, the friction coefficient drop shows the opposite 
trends to the existing literature. Unfortunately, the exact reason 
is not clear at the moment. Additionally, in the current analysis, 
only the influence of normal load, shear velocity and plate stiff-
ness on plate motion is discussed. However, other parameters such 
as gouge thickness, particle-particle and particle-plate friction co-
efficient, particle size distribution and the presence of fluids may 
also play significant roles in the behavior of elastic elements in the 
gouge that give the system its frictional properties. Further work is 
necessary to provide a thorough characterization of the above re-
maining problems.

5. Conclusions

We have applied the FDEM to explicitly simulate the stick-slip 
induced near gouge plate motion in a sheared granular gouge fault 
system. In the FDEM model, the plates and particles are repre-
sented by discrete elements to track their motion and interaction 
with neighboring objects, and each discrete element is further 
discretized into finite elements to capture its deformation during 
shear loads. Three groups of models with a total of 12 simulations 
have been conducted to respectively explore the influence of nor-
mal load, shear velocity and plate stiffness on the plate motion 
in terms of x velocity and x displacement in locations adjacent 
to the gouge during the stick and slip phases. The gouge effective 
shear modulus is also interpreted based on the plate motion, and 
a potential scaling of plate motion and the gouge effective shear 
modulus with respect to normal load, shear velocity and plate stiff-
ness is discussed.

The simulations show that for all the models, during each slip 
event, the bottom of the upper plate lurches to the right and the 
top of the lower plate resets towards the left. The x couple velocity 
for each sensor pair on the upper and lower plates is used to an-
alyze the plate motion during slip events. The results indicate that 
the maximum x velocities could be as large as 2-3 orders of the 
shear velocity. As the normal load increases, larger x couple veloc-
ities are generated. The shear velocity seems to have no significant 
influence on plate motion during slips, while stiffer plates result in 
a relatively “quieter” system with smaller x velocity magnitudes. 
The x couple velocity correlates well with the drop of macroscopic 
friction coefficient, and large x velocity magnitudes are generally 
associated with large macroscopic friction coefficient drops. For the 
models subjected to smaller normal loads, the same x couple ve-
locity can cause larger drops of macroscopic friction coefficient. 
Large friction drops during slips can also be more frequently ob-
served when using stiffer plates. However, the shear velocity seems 
to have no distinct effect on the correlation between macroscopic 
friction coefficient drop and x couple velocity.

During the stick phases, the x velocities recorded at the sen-
sors located on the upper and lower plate are respectively slightly 
greater and slightly less than half of the shear velocity. This small x
velocity difference between the upper and lower plates is evidence 
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that the gouge is experiencing a growing shear strain necessary 
to support the growing shear stress in the system. We have calcu-
lated both the shear strain and shear stress rates for all the models 
and thus obtained the gouge effective shear modulus. The results 
show that both the increasing normal load and plate stiffness en-
hance the effective shear modulus of the gouge, while larger shear 
velocity has the opposite effect. However, compared with the nor-
mal load, the effect of shear velocity and plate shear modulus on 
gouge effective shear modulus is less significant.

The scaling analysis shows that the x velocity at slips is propor-
tional to the normal load acting on the system. The shear velocity 
does not show a distinct influence on the plate motion during slip 
phases. The x velocity at slips may be inversely proportional to 
the square root of the plate shear modulus. Additionally, the gouge 
effective shear modulus increases proportionally with the normal 
load, while the influence of shear velocity and plate shear mod-
ulus on gouge effective shear modulus is minor when compared 
with the normal load. We suspect that the normal load deter-
mines the nature and strength of the stress chains that mainly 
control the frictional properties of the gouge. Whereas the shear 
velocity and plate stiffness only determine the rate at which the 
elastic elements in the gouge have their strength tested. The simu-
lations disclose the influence of normal load, shear velocity and 
fault block stiffness on the stick-slip induced near gouge vibra-
tion, and may help understand the complex behavior of earthquake 
source physics and dynamics.
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