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Abstract

This work develops a continuum-based combined finite–discrete element method (FDEM) in the framework of the explicit
nite element method in conjunction with fracture algorithms. To account for complex fracturing processes, both shear failure
nd tensile failure criteria are implemented. Furthermore, to investigate the effect of different fracture algorithms on the accuracy
nd computational efficiency of simulations, both the inter-element and intra-element fracture algorithms are developed in the
ontinuum-based framework. Then, they are compared by two benchmark tests, of rock: the Brazilian tests and uniaxial tension
ests. Besides, uniaxial compression tests under different loading rates are carried out to demonstrate the shear failure criterion
nd the corresponding fracture algorithm.The simulation results converge with the decrease of element sizes in the inter-
lement fracture algorithm. The intra-element fracture algorithm is proven to be more efficient and accurate in the simulation
f fracturing processes compared to the inter-element fracture algorithm.
c 2021 Elsevier B.V. All rights reserved.

eywords: Finite element method; Discrete element method; Smeared fracture model; Intra-element fracture; Strain softening

1. Introduction

It has been nearly thirty years since the combined finite–discrete element method (FDEM) was first proposed
y Munjiza [1]. The original aim of FDEM was to bridge the gap between the continuum simulations by the
nite element method (FEM) and the discontinuous/discrete simulations by the discrete element method (DEM).
ts most striking feature is to simulate the transition process from a continuous to discontinuous/discrete state in a
ractical manner, especially for cases under blasting and missile impact situations [2–4]. To date, the FDEM has
een extensively applied to various scientific and engineering problems. A recent review of its development and
pplications can be found in the literature [5,6]. Because of its distinct merit in modeling the fracture process of solid
aterials, it has been coupled with the fluid flow solver to simulate hydraulic fracture phenomenon in petroleum

ngineering [7–10], the heat transfer solver to investigate the fracture process triggered by thermal stress [11,12],
nd mass transfer solver to simulate the proppant migration process within fractures [13].
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Fig. 1. Illustration of the cohesive element.

From the viewpoint of computational framework, the FDEM can be divided into two categories: the
EM-based FDEM and continuum-based FDEM. In the former, the update of nodal motion is element-based, and
cohesive element between meshes sharing a common edge is embedded to simulate the fracture/damage process

t the very beginning of the simulation. Take a two dimensional case shown in Fig. 1 for instance, the edge O P
n the continuum method, e.g. FEM, will be decomposed into two edges, O P and O ′ P ′, with the two pairs of end
oints sharing the same positions in the DEM-based FDEM. The edge O P belongs to element 2, and O ′ P ′ belongs
o element 1. The four-node element O P P ′O ′ is the cohesive element enclosed by dashed lines in Fig. 1(b). After
eformation, the nodes O and O ′ may depart from each other even without failure at this place. It is different

from the continuum methods where there is only one point O and its displacement is exclusively determined from
odal forces. Therefore, the update of nodal motion in the DEM-based framework can be regarded as element based.
nother distinct feature is the introduced cohesive element, which is the key for fracture initiation and insertion. The

tress state of cohesive elements will be directly computed from the relative displacement of edges O P and O ′ P ′.
f the failure criteria are satisfied at the cohesive element, then a fracture can be directly inserted and represented by
he cohesive element, and the linked nodes, e.g. O and O ′, through the cohesive elements will become independent.
his fracturing algorithm is straightforward to implement for complex fracturing simulations, especially for three
imensional cases. However, fractures may only initiate and propagate along element edges/surfaces, and thus can
e termed as an inter-element fracture algorithm. Normally, to secure a more accurate simulation of fracturing
rocess, finer meshes are required, especially around fracture tips.

The continuum-based FDEM is often based on the explicit finite element method, and no pre-embedded cohesive
lement is required. In this framework, the deformation of continuum is simulated by the explicit FEM. The solid
s spatially discretized into meshes, and the motion of nodes, including shared nodes by neighboring elements,
s determined from Newton’s second law which governs the nodal movement in the DEM-based FDEM. The
alculation of element strain and stress at Gauss points also follows the finite element method. Then, based on
he element stress state, fracture mechanics can be employed to handle the fracture initiation and propagation in
ach element. This framework has been embedded into the multifield and multiphase FEM commercial software,
alled ELFEN, of Rockfield Software UK. One of the earliest references of this continuum-based FDEM is Dr Yu’s
hD thesis [3]. Since then, more research work has been conducted based on this framework in [4,7,13–15], and
lso in [9,16,17]. In [3], a nodal fracture algorithm was proposed to insert fractures through elements. Fractures can
ropagate between or through elements depending on the nodal failure direction, which is termed as the intra-element
racture algorithm. However, only tensile failure was considered in these work.

Several fracture procedures have been proposed for the FDEM and they can be roughly divided into the
nter-element fracture algorithm and the intra-element fracture algorithm, according to the way that fracture is
mplemented. The DEM-based FDEM with cohesive elements falls into the former. In the continuum-based
ramework, both inter- and intra-element fracture algorithms can be realized. The fracture algorithm in FDEM
s an important aspect directly associated with the efficiency of fracture simulations. The inter-element fracture
s simple to implement, but requires relatively fine element meshes to ensure accuracy. Detailed discussion on
he sensitivity of mesh size can be found in [18–20]. In contrast, the intra-element fracture allows fractures to
nitiate and propagate orthogonal to the failure direction, and may pass through the elements. Compared to the

nter-element fracture algorithm, the intra-element fracture algorithm is a more efficient way to obtain an accurate
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fracture simulation. However, the fracture insertion process is not straightforward, especially in three-dimensional
cases. The combination of the intra-element fracture and local remeshing technique around the fracture tip is more
powerful in practical engineering and scientific simulations [4,7,13–15].

It should be mentioned that the FDEM research group at Lawrence Livermore National Laboratory initially
ollowed the DEM-based FDEM in the 1990s [21], then adopted the continuum-based framework with an improved
nter-element fracture algorithm [22]. Strictly speaking, the continuum-based FDEM has a solid foundation of
ontinuum mechanics, therefore is theoretically more rigorous. Its combination with the intra-element fracture
lgorithm and adaptive remeshing is more efficient in both computational cost and numerical accuracy. However,
n addition to the difficulty in the implementation of the intra-element fracture algorithm, the adaptive remeshing
echnique is more challenging. Hence, most of the fracture simulations based on the continuum framework are

ainly performed using the commercial software, ELFEN [23].
The primary aim of this work is to improve the existing continuum-based FDEM, where currently only tensile

ailure/fracture is considered, by incorporating the shear-dominated failure criterion. Furthermore, to investigate the
ffect of different fracture algorithms on the accuracy and efficiency of fracture simulations, both the inter-element
nd intra-element fracture algorithms are developed. Particularly, an adaptive intra-element fracture algorithm
ccounting for shear failure fractures is proposed. A detailed introduction to the primary aspects of the continuum-
ased FDEM used in this work is given in Section 2. Then, two numerical examples, Brazilian tests and uniaxial
ension tests of rock, are carried out to explore the influence of fracture algorithms on the simulations of fracturing
rocess. Uniaxial compression tests under different loading rates are also carried out to demonstrate the shear
ailure criterion and corresponding fracture algorithm in Section 3. Discussions on the new findings of this work
re conducted in Section 4 before a conclusion is drawn in the last section.

. Continuum-based FDEM

The continuum-based FDEM takes fully advantage of the explicit FEM. It discretizes the computational domain
nto fine meshes/elements, so-called spatial discretization. Evolution of the deformation process of the continuum
nder consideration is discretized into many time increments, so-called time discretization. A small time step is
elected such that within each time increment, the acceleration and velocity can be regarded as constant. Since
he state evolution (dynamic equilibrium equation) of the model is advanced explicitly using Newton’s second law,
terations and tolerances used in implicit FEMs are not required.

In the continuum-based FDEM, the solution of dynamic equilibrium equation is node-based. In each time step,
he motion of nodes can be determined by Newton’s second law, which is followed by the calculation of strain
f the element and subsequent stress calculation of Gauss points using constitutive models. Then, the fracture
echanics can be used to insert fractures in places where the selected failure criteria are satisfied. Based on the

omputed element stresses, the nodal internal force can be computed and assembled. Meanwhile, the external
orce applied to each node can be obtained from boundary loading conditions and/or the contact forces from other
iscrete/discontinuous bodies in contact. In the rest of this section, main key aspects of the continuum-based FDEM
ill be introduced in detail. As to the discrete contact interaction, it is the same as the one in the DEM-based
DEM [2,24], and its latest progress can be found in [25,26].

.1. Motion of nodes

The deformation of the system is accomplished by updating the motion of all mesh nodes using Newton’s second
aw

Mü(t) + Cu̇(t) = Pext
+ P int , (1)

here M is the mass matrix, C is the damping matrix, Pext and P int are the external force and the internal force,
respectively, applied to the node. The internal force P int applied to a node is calculated from the stress σ obtained
rom constitutive models and shape function N of elements sharing the node. ü and u̇ are the acceleration and
elocity, respectively. In the explicit algorithm, the acceleration üi (t) of node i is determined by Eq. (1), and its
elocity u̇i (t +

∆t
2 ) is updated using the central difference scheme as follows:

u̇(t +
∆t

) = u̇(t −
∆t

) + ü(t)
∆t(t) + ∆t(t + ∆t)

. (2)

2 2 2
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Fig. 2. Elasto-plastic mechanical behavior of a material.

hen, the displacement ui (t + ∆t) of node i can be calculated by

u(t + ∆t) = u(t) + u̇(t +
∆t
2

)∆t(t + ∆t). (3)

2.2. Constitutive models

Based on the nodal displacement, the next step is to calculate the element strain and then calculate stress of each
element based on the constitutive model used. In the framework of elasto-plastic constitutive models, the incremental
total strain ∆ε can be decomposed into an elastic component ∆εe and a plastic component ∆ε p by

∆ε = ∆εe
+ ∆ε p. (4)

For the strain-controlled loading conditions, the incremental stress ∆σ can be computed by

∆σ = D∆εe, (5)

where D is the elastic modulus matrix. During each time step, the incremental plastic strain can be calculated from
the flow rule, and its general form is given by

∆ε p
= dλ

∂Φ

∂σ
, (6)

here dλ is the plastic multiplier, and Φ is the plastic potential function.
In the whole mechanical response of materials, the plastic deformation can have two phases (see Fig. 2), the

ardening stage and/or the softening stage. In the hardening stage, the plastic multiplier can be obtained by

dλ =
∂ f
∂σ

∆σ

Hp
, (7)

where f is the yield function. In this work, a non-associated flow rule and a deviatoric hardening law [27,28] are
adopted. The yield function and the plastic potential function are respectively defined as

f =
√

3σ − η(ε p
q )σm g(θ ), (8)

Φ =
√

3σ + ηcσm g(θ ) ln(
σm

σ 0
m

), (9)

here σ , σm and θ are stress invariants [27]. The hardening parameter η(ε p
q ) = η f

ε
p
q

A+ε
p
q

is a function of the deviatoric

plastic strain (ε p
q ). η f and ηc are the failure slope and the zero-dilatancy slope respectively. A is a material constant

related to hardening. The convex function g(θ ) associated with the angle of internal friction (φ) is given by

g(θ ) =
3 − sin φ

√ . (10)

2 3 cos θ − 2 sin θ sin φ
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Hp in Eq. (7) is the plastic hardening modulus given by

Hp = −
∂ f
∂ε

p
q

∂Φ

∂σ
. (11)

In the softening stage, the plastic multiplier becomes

dλ =
∂ F
∂σ

∆σ

Hp
. (12)

here F is the failure function. For materials with brittle failure, a linear softening law associated with the fracture
nergy is commonly used [13,15,29,30]. Therefore, in the strain-softening stage equation (6) can be simplified as

∆ε p
= −H∆σ , (13)

here H is the softening slope determined from the material strength (σ m), the element characteristic length (lc)
nd the fracture energy release rate (G f ) by

H =
σm

2lc

2G f
. (14)

.3. Fracture criteria and fracture algorithm

The failure behavior of solid materials is rather different. For most brittle materials, such as rock, concrete and
lass, tensile failure/fracture is most common. Under confining conditions, they may exhibit shear or compressive
ailure/fracture from the macroscopic viewpoint. In this work, both shear and tensile fractures are considered.

In geomechanics, the Mohr–Coulomb failure criterion is the most commonly used shear failure criterion. It
ostulates a linear relationship between the shear stress (τ ) and the normal stress (σ n),

τ = c − σ n tan φ, (15)

here c is the cohesion. Its specific form in terms of stress invariants is given by

F =
σ

g(θ )
−

2
√

3 sin φ

3 − sin φ
σm −

2
√

3c cos φ

3 − sin φ
= 0. (16)

t is noted that the Mohr–Coulomb criterion employs two material constants c and φ. Both of them can be obtained
rom basic laboratory tests.

For tensile and compressive failures, a smeared fracture model with a linear softening law is commonly used to
imulate the fracture process. The idea of the smeared fracture model is to replace the physical process of discrete
racks in a control volume, e.g. a finite element, by inserting a continuous fracture after the strain softening stage.
t rationalizes the relationship between the softening slope and the fracture energy release rate using Eq. (14) such
hat the energy dissipated in the discrete and smeared failure process is equivalent. In the softening stage, the failure
train ε f (ε f = 0, when σ = σm) will be accumulated. The failure criterion is satisfied when the maximum failure
train εm is reached (see Fig. 3). The maximum failure strain is calculated by

εm =
σm

H
. (17)

When the above failure criteria are satisfied, a virtual smeared fracture will be inserted into the physical element
sing a specific fracture algorithm. In the DEM-based FDEM, nodal failure is first examined by the cohesive
lements. Then, fracture insertion will be performed by the removal of cohesive elements at the failure places shown
n Fig. 1. In contrast, the process of fracturing in the continuum-based FDEM is approached by fracture mechanics.
he failure criteria are examined at each node, and two fracture algorithms can be used. One is the inter-element

racture algorithm [2] used in the DEM-based FDEM. To better simulate the fracture propagation, an improved inter-
lement fracture algorithm by the inclusion of middle points of element edges was developed to improve fracture
imulations [7,22]. The other is the intra-element fracture algorithm, in which the fracture propagates orthogonal to
5



M. Wang, K. Gao and Y.T. Feng Computer Methods in Applied Mechanics and Engineering 384 (2021) 113978

w
s
6

d

w
p

Fig. 3. Linear softening law.

Fig. 4. Intra-element fracture algorithm.

the direction of the nodal maximum tensile strain [3,15]. Next, we will propose an improved intra-element fracture
algorithm, in which the shear failure induced fracture is also considered, and its primary steps are as follows:

(1) Since the strain and stress state of each element has been determined using constitutive models, we need to
first map the strain and stress of each node from Gauss points of surrounding elements;

(2) According to the nodal stress state, we will first identify shear failure nodes using the Mohr–Coulomb criterion
described by Eq. (16);

(3) Then, we need to check whether tensile or compressive failure occurs at other undamaged nodes using the
element size dependent maximum failure strain εm ;

(4) Once all failure nodes are determined, the failure direction n f at each failure node is defined as the direction
of tensile/compressive strain. The fracture propagation direction, i.e. fracture plane, is orthogonal to the failure
direction. Fig. 4 shows a local case of the intra-element fracture algorithm with node O being the failure node.
In most cases, the fracture plane will penetrate through the surrounding elements. Then a continuous fracture
connecting two intersections, e.g. E and F , along the fracture plane can be inserted;

(5) To avoid abnormal elements, such as needle-shaped element, created by the intra-element fracture algorithm,
e need to separately examine the intersection angle between the fracture plane and the adjacent edge sharing the

ame failure node, O . Take Fig. 4 for an example, if the intersection angle between edges O A and O E is less than
◦, the fracture will be forced to propagate along edge O A instead of O E .

(6) The final step is to update the element mesh based on the inserted fractures, and to initialize the associated
ata at the failure nodes.

In some cases, the above intra-element fracture algorithm could result in the creation of very slender elements
hich will lead to an extremely small time step and subsequent expensive computational costs. Step 5 above

rovides a way to overcome such issues, which is simpler to implement for 2-d cases for most researchers.

6
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Particularly, a more stringent but challenging method, local or global remeshing technique, can be employed to avoid
very small time step [3,15]. In this work, we will focus on the key role of the intra-element fracture algorithm in
accurate fracture simulations and computational efficiency over the inter-element fracture algorithm in the framework
of continuum-based FDEM.

3. Numerical experiments

In this section, we will first investigate the effect of the fracture algorithms mentioned above on the simulation
ccuracy and computational efficiency in the framework of continuum-based FDEM using two benchmark tests,
he Brazilian test and the uniaxial tension test of rock. Then, to further demonstrate the shear failure criterion and
he corresponding fracture algorithm, uniaxial compression tests under different loading rates are carried out. The
umerical examples are conducted by our in-house code developed based on the explicit element method in this
ork.

.1. Brazilian tests

In the first benchmark, a circular disk of rock will undergo compression by upper and lower jaws which move
owards each other (see Fig. 5). The diameter (D) of the rock disk is 100 mm; the Young’s modulus and Poisson’s
atio of the rock under consideration are 12.0 GPa and 0.26 respectively; the bulk density is 2.6 g/cm3; the uniaxial
ensile and compressive strengths are 4 MPa and 100 MPa, respectively; the angle of internal friction is 40◦, and
he hardening parameter A used in the deviatoric hardening plastic model is 0.002. The fracture energy release rate
G f ) is 3 N/m. For the jaws, only elastic behavior is considered in this work. Their Young’s modulus and Poisson’s
atio are selected as 200 GPa and 0.29 respectively; the density is 8.0 g/cm3. To deal with the contact interaction

between rock blocks caused by fracturing, a linear normal contact model with the normal penalty (normal stiffness)
equal to 1.2 GPa m is applied. A Coulomb friction model is adopted to solve the tangential interaction with the
tangential penalty and the friction coefficient being 0.12 GPa m and 0.5. While for the contact between the jaws
and the rock, the normal penalty and the tangential penalty are 20 GPa m and 2.0 GPa m. The friction coefficient
is 0.5.

The displacement-controlled loadings with a constant speed 7.5 mm/s for the upper and lower jaws are applied
at the same time. To investigate the effect of the fracture algorithms on the fracturing simulation, two groups of
Brazilian tests using the inter-element and intra-element fracture algorithms are carried out, respectively. In each
group, various mesh sizes with characteristic length (lc) being 5, 4, 2 and 1 mm are adopted. Snapshots of the stress
contours of the rock sample with the intra-element fracture algorithm and the characteristic length of mesh being 4
mm at different time instants are shown in Fig. 5. With the progress of loading, the magnitude of stress within the
rock sample is increasing gradually. The initiation of fracture occurs after 0.0155 s. From the snapshot at 0.0158
s, intra-element fractures can be clearly observed.

The variation of the contact force (P) during the compression process between the upper jaw and the rock sample
is given in Fig. 6(a) in the simulation with the intra-element fracture algorithm and the characteristic length of mesh
equal to 4 mm. The relationship between the compressive force and the tensile stress (σ t ) is described by [31]

σ t =
2P

π Dh
. (18)

In the above equation, the unit of the diameter (D) of the rock sample and its thickness (h) is mm. The units
of compressive force (P) and tensile stress (σ t ) are N and MPa, respectively. The converted stress is shown in
Fig. 6(b), where a brittle failure mode can be observed.

Next, we investigate the effect of mesh size on the continuum-based FDEM with the inter-element fracture
algorithm. The fracture distribution within the rock sample at the end of four simulations using the inter-element
fracture algorithm with different mesh sizes is given in Fig. 7, where the mesh topology is clearly shown. For the
models with larger mesh sizes, obvious fracture propagation along element edges can be seen. To distinguish the
mesh and the fracture distribution, the obvious fracture patterns are highlighted in red in Fig. 7 using the mode of
feature edges. It is found that the distribution of primary fractures in the simulations with mesh sizes of 2 mm and
1 mm is similar. While in the simulations with larger mesh sizes the fracture is significantly different from those in
7
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Fig. 5. Snapshots of stress (σ xy ) contour and fractures of Brazilian tests with intra-element fractures.

Fig. 6. Mechanical response of the sample.

the simulations with smaller mesh sizes. In addition to the fracture distribution, we further compare the stress–strain
response of simulation with different mesh sizes in Fig. 8. The corresponding numerical errors of tensile strength
are calculated with the value obtained from the smallest element size being the reference strength, and are shown
in Fig. 9. We can also find the similar phenomenon as observed in fracture distribution that the tensile strength
converges with the decrease of element size.

To compare the inter-element and intra-element fracture algorithms on the numerical Brazilian tests and evaluate
the efficiency of the latter, we compare the fracture distribution in the simulations using the intra-element fracture
algorithm with different element sizes in Fig. 10, where fracture distributions are highlighted in red again. We can
8
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Fig. 7. Fracture distribution in models using inter-element fracture.

Fig. 8. Comparison of stress–strain behavior under different element sizes.
9
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t

Fig. 9. Effect of element size on numerical error of tensile strength.

Fig. 10. Comparison of failure of models using the intra-element fracture. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

see in the simulations with the characteristic size of 5 mm and 4 mm, smaller elements are created due to the
intra-element fracture algorithm. However, with the decrease of element size no obvious intra-element fractures can
be found in the simulation with the characteristic size being 2 mm. For the simulations with the characteristic size
of 2 mm but different fracture algorithms, their fracture patterns are almost the same as shown in Fig. 11, where
the differences are marked using white circles. For the simulations with larger element sizes, the introduction of
the intra-element fracture algorithm renders the fracture distribution closer to that in the fine-element simulation.
Although there are still some differences, it is much better than the one obtained by the inter-element fracture
algorithm.

The effect of element size on the tensile strength is shown in Fig. 12, where both inter- and intra-element fracture
algorithms are accounted for. Compared to the inter-element fracture algorithm, the intra-element fracture algorithm
can improve the accuracy of tensile strength to a certain degree when the element size is relatively large.

3.2. Uniaxial tension tests

We further evaluate the intra-element fracture algorithm using uniaxial tension tests of rock. The size of the rock
sample is 100 mm × 200 mm. All material parameters of rock and contact models are the same as those used in
he above Brazilian tests. The displacement-controlled loadings with constant speed 7.5 mm/s are applied to the
10
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Fig. 11. Comparison of fracture distribution simulated by different fracture algorithms (lc = 2 mm).

Fig. 12. Effect of element size on tensile strength.

nodes at the top and bottom boundaries of the rock sample. As neither platens nor jaws are used in this tension
test, the stress–strain curve is not available, and we will focus on the fracturing process in this benchmark.

We compare the fracture distribution in the simulations with the inter-element fracture algorithm and three
element characteristic sizes in Fig. 13, where the vertical displacement contour of rock samples before and after
fracturing process are shown. In this benchmark the effect of element size on fracture distribution is more remarkable
for the simulations using the inter-element fracture algorithm. Then, we further investigate the element size effect
on the simulations using the intra-element fracture algorithm. The fracture distribution at the end of the simulations
of different element sizes is shown in Fig. 14. Again, it is evident that fractures propagate through elements in
the simulations with characteristic length being 10 mm and 6.5 mm. It is clear that the fracture distribution in the
simulations with the element characteristic length being 10 mm and 6.5 mm is similar to the one in the simulation
with the fine element size when the intra-element fracture algorithm is utilized to simulate the fracturing process,
which indicates that the intra-element fracture algorithm has obvious influence on the simulations of fracturing

process with relatively large element sizes.

11



M. Wang, K. Gao and Y.T. Feng Computer Methods in Applied Mechanics and Engineering 384 (2021) 113978
Fig. 13. Size effect on failure process for the inter-element fracture models.

3.3. Uniaxial compression tests

The above Brazilian tests and uniaxial tension tests of rock clearly demonstrate the importance and efficiency
of the intra-element fracture algorithm. Next, the proposed FDEM will be further used to investigate the initiation
and propagation of shear failure induced fractures using uniaxial compression tests of rock under different loading
rates.

As shown in Fig. 16, the rock sample with size 100 mm × 200 mm will be compressed by two parallel platens

moving towards each other. The mechanical parameters of the platens and the rock sample are almost the same as

12
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Fig. 14. Fracture distribution of models with intra-element fracture.

Fig. 15. Stress–time curves under different loading rates.

those in the Brazilian tests, except that the Young’s modulus of the rock sample is 25.0 GPa. The contact parameters
of platen–rock and rock–rock also follow the Brazilian tests. Three loading rates, vy = 2 mm/s, 5 mm/s and 10
mm/s, are respectively applied to the upper and lower platens. The mechanical responses of rock samples under
different loading rates are given in Fig. 15. It is obvious that all rock samples show brittle failure, and the lowest
uniaxial compressive strength can be observed from the test with the smallest loading rate.

Fig. 16 shows the snapshots of fracturing, colored by red, of rock samples with the initial mesh size being 4 mm
under different compressive loading rates. We can see that the initiation of fractures and subsequent propagation are
of great differences in the rock samples under different loading rates. However, it is evident that these fractures are
all shear failure induced, because they propagate mainly along the shear zone formed in the compression process.

4. Discussions

In this work, it has been demonstrated that the simulation performed using the continuum-based FDEM in
conjunction with the inter-element fracture algorithm converges with the decrease of element sizes. For an accurate
simulation of fracturing process a very fine mesh is required, especially in the area around the fracture tip. However,
it is unknown where the fracture initiates within the continuum in most cases. In such a situation, the whole
simulation domain needs to be discretized using fine meshes, which may be computationally expensive. To improve
13
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Fig. 16. Fracture distributions under different loading rates. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

the computational efficiency of the continuum-based FDEM, an intra-element fracture algorithm was proposed by
Prof. Owen’s group at Swansea University, UK. We adapt the intra-element fracture algorithm in this work, and
14
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Fig. 17. Computational costs used in the Brazilian tests.

examine its efficiency in the Brazilian tests, uniaxial tension and compression tests of rock. It is found that the intra-
element fracture algorithm can improve the numerical accuracy of the fracturing process in the simulations with a
relatively large mesh size compared to the inter-element fracture algorithm in the framework of continuum-based
FDEM. In the inter-element fracture algorithm, the fracture can only propagate along the edges of elements. For a
simulation with a relatively large element size, the failure plane could pass through the element. If the fracture is
only allowed to propagate along element edges, there will be numerical errors caused unless a very fine mesh is
adopted. In contrast, the intra-element fracture algorithm can secure the accurate simulation of fracturing process.
This has been evaluated in the above benchmark tests. In the Brazilian tests, the indirect tensile strength obtained
from simulations with large element sizes and the intra-element fracture algorithm is only improved to a certain
degree compared to the one obtained by the inter-element fracture algorithm.

One potential concern is that if very small-sized elements are created by the intra-element fracture algorithm, it
may result in an extremely small time step and subsequently leads to very expensive computational costs. To quantify
this concern, the computational efficiency of the continuum-based FDEM using different fracture algorithms and
different element sizes is examined. The total CPU costs of all the numerical simulations of the Brazilian tests
are compared in Fig. 17, where the simulations are carried out in a laptop with Intel Core i5-6200U CPU @ 2.30
GHz–2.40 GHz and 8 GB memory (RAM).

It is shown that with the decrease of element sizes, the computational cost increases dramatically in both the
inter-element and intra-element fracture algorithm groups. For the simulations with element sizes of 1 mm and 2
mm, there is no distinct difference in computational costs between the two algorithms, simply because fractures only
propagate along element edges when element sizes are sufficiently small. While for the simulations with element
sizes ranging from 4 mm to 5 mm, the computational cost of the simulations using the intra-element fracture
algorithm is more expensive than the simulations using the inter-element fracture algorithm. However, compared to
the accurate simulations using smaller element sizes, the increased time cost caused by the intra-element fracture in
the simulations with relative larger elements can be ignored, which indicates that the intra-element fracture algorithm
is more efficient. It is worth mentioning that to further improve the computational efficiency of the intra-element
fracture algorithm, both global and local remeshing techniques can be employed to avoid elements with smaller
characteristic sizes. Related work can be found in [3,15].

5. Conclusions

This work presents an improved continuum-based FDEM by the incorporation of shear failure induced fractures.
Both the inter-element and intra-element fracture algorithms are developed. In particular, we also propose an
improved intra-element fracture algorithm for fractures induced by both tensile and shear failure criteria. Then,
15
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benchmark tests, the Brazilian test, the uniaxial tension and compression tests of rock, are carried out to demonstrate
our improved continuum-based FDEM. Conclusions can be drawn as follows:

(1) Compared to the DEM-based FDEM, the continuum-based FDEM is more solid in theory, but its implemen-
ation is difficult and very challenging for three-dimensional simulations.

(2) The simulated mechanical behavior of rock by the continuum-based FDEM with the inter-element fracture
lgorithm converges when element size decreases.

(3) Benchmark tests prove that the intra-element fracture algorithm is more efficient in both computational cost
nd numerical accuracy compared to the inter-element fracture algorithm in the framework of continuum-based
DEM.

Obviously, more work, including detailed investigations of the model and related algorithms, is needed to further
valuate and improve the current two-dimensional FDEM. As we mentioned in the previous sections, some of the
lgorithms, such as the one to remove abnormal and slender elements, are only for 2-d problems, and their extension
o 3-d models is not straightforward. Besides, to further improve the computational efficiency of the intra-element
racture algorithm, adaptive remeshing techniques are required for the simulations of engineering problems, which
ill be our future work.
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