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A B S T R A C T

Local mean stress state is an important parameter to many rock mechanics and geomechanics applications,
yet its estimation may be subject to large uncertainty owning mainly to the usual limited number of high-
quality stress data and the potentially significant natural variability of stresses in a rock volume. Hence, it
is essential to quantify and reduce uncertainty in local mean stress estimation. This paper proposes a novel
Bayesian hierarchical model that both probabilistically quantifies uncertainty in local mean stress estimation
and allows logical borrowing of information across stress data from nearby locations. By application to both
real-world and simulated stress data, our results show that the hierarchical model can improve local mean stress
estimation simultaneously at each location in terms of uncertainty reduction in comparison to the customary
approach. This improved probabilistic estimation has further benefits in that it not only allows for probabilistic
implementation of further analyses in other applications involving mean stresses, but also gives more accurate
analysis results.
. Introduction

Knowledge of in situ stress state is of great importance for a wide
ange of rock mechanics and geomechanics applications, such as rock
ngineering design, hydraulic fracturing evaluation, nuclear waste de-
osition, groundwater flow analysis, mineral and petroleum extraction,
nd earthquake prediction.1–6 In these applications, local mean stress –
n indicator of the overall stress state in a local rock volume – is often
f interest as an input parameter, and is usually estimated using the
verage of a number of stress tensors measured from this location.7–14

his estimation practice can be written as:

̂ = 1
𝑛

𝑛
∑

𝑖=1
𝐒𝑖 =

1
𝑛

𝑛
∑

𝑖=1

⎡

⎢

⎢

⎣

𝜎𝑥𝑖 𝜏𝑥𝑦𝑖 𝜏𝑥𝑧𝑖
𝜎𝑦𝑖 𝜏𝑦𝑧𝑖

sym. 𝜎𝑧𝑖

⎤

⎥

⎥

⎦

, (1)

here �̂� ∈ R3×3 is the estimate of the local mean stress tensor,
𝑖 ∈ R3×3 is the 𝑖th measured stress tensor, and 𝜎 and 𝜏 are the
ormal and shear tensor components with respect to a common 𝑥-𝑦-𝑧
artesian coordinate system, respectively. Further, the eigenvalues and
igenvectors of �̂� are taken to be the estimates of the magnitudes and
rientations of the principal mean stress state, respectively.

Statistically speaking, the estimate �̂� is only a point estimate of
he unknown mean stress state in the local volume of interest given
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measured stresses. However, such point estimation may be subject to
large uncertainty owing mainly to the usual limited number of high-
quality stress data and the potentially significant natural variability of
stresses within a local rock volume.2,15–19 Also, potential measurement
error and inadequacy of the statistical model may contribute to un-
certainty in the resulting mean stress estimates. Hence, it is crucial to
probabilistically quantify such uncertainty, as it allows for quantitative
assessment of the reliability of estimated mean stresses and also facil-
itates application of more rational probabilistic analyses in, e.g., rock
engineering design and earthquake risk assessment. For this reason, in
a previous work, the authors proposed a Bayesian multivariate model
that can probabilistically quantify uncertainty in mean stress estimation
and demonstrated that the usual small numbers of stress data tend to
yield unreliable mean stress estimates.20

Following this, a question that is commonly asked by practitioners
is how the local mean stress estimation may be improved by utilizing
stress information from other sources. In practice, many additional
sources could be available to provide at least partial information on
the local mean stress state at no or low cost, and they include stress
data measured from nearby locations, the commonly-assumed linear
relation between vertical stress and burial depth, borehole breakouts,
drilling-induced tensile fractures, fault-slip analysis, earthquake focal
vailable online 20 October 2021
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Fig. 1. Plan view of the 240 level of the AECL’s URL showing the locations of 13
boreholes of overcoring stress measurements [after9].

mechanisms, core disking, geological indicators and the like.2,3,21,22

Being able to use these additional stress information sources would
be highly valuable, since the common stress measurement methods
(e.g., hydraulic fracturing and overcoring) are both time-consuming
and costly. Unfortunately, a logical framework to combine stress in-
formation from different sources is still lacking thus far. In several
earlier works by the authors, we have demonstrated the potential of the
Bayesian approach to formally incorporate additional stress informa-
tion into stress estimation via informative prior distributions, but also
highlighted some key challenges in eliciting appropriate informative
priors from individual stress information sources.20,23

Among the additional stress information sources, stress data from
nearby locations may be a particularly important one, because they are
generally available at the scale of interest and provide roughly the same
level of data quality as the immediate stress data at hand. Especially
in civil and mining engineering projects, stress measurements are often
made in multiple boreholes on the same level or within a small domain.
As an example, Fig. 1 shows the locations of 13 nearby boreholes on
the 240 level (roughly a 60 m × 60 m domain) in the Underground
Research Laboratory (URL) of the Atomic Energy of Canada Limited
(AECL) in Manitoba, Canada, in which a total of 100 high-quality
stress tensors were measured using the overcoring method.9 In such
a case, the stress data from each borehole are customarily averaged
independently to be taken as the estimate of the local mean stress
state at the location of that borehole. However, based on our general
understanding of stresses in rocks, stress states at nearby locations
may have some degree of similarity rather than being either entirely
different or identical, and thus may inform each other to a certain
extent.

In the Bayesian framework, while informative priors provide a
means of incorporating information from other sources, they are not
sufficient for local mean stress estimation in the context of multiple
stress data groups from nearby locations. The main reasons are twofold.
First, each individual stress group rather than only one group may
borrow, more or less, some information from the other groups, but
using informative priors does not allow such adaptive borrowing of
information simultaneously for local mean stress estimation for each
individual group. Second, constructing informative priors from stress
data at nearby locations is a manual task involving some subjectivity.
For data structured in groups (e.g., stress data from nearby locations
2

herein and data compiled from multiple studies), a more objective
and flexible approach to borrowing of information across groups is
to implement hierarchical models (also known as multilevel models),
which are known for their ability of accommodating possible simi-
larity between data groups.24,25 Hierarchical models are extensively
used as a method for combining information from multiple similar
studies (known as meta-analysis) in the fields of medical research,
social science, ecology and public health,24–31 and have recently gained
attention in geotechnical and geophysical data analysis.32–38

In this paper, we present a novel Bayesian hierarchical model
for analysis of multiple stress data groups from nearby locations and
demonstrate how the proposed hierarchical model can give improved
local mean stress estimation simultaneously at each individual location
compared to the customary approach in terms of uncertainty reduction.
To this end, the remainder of this paper is organized as follows.
Section 2 first concisely introduce the basics of hierarchical modelling
along with two alternative conventional modelling approaches (i.e., no
pooling and complete pooling) when dealing with data which are
structured in groups, and then give the formulations of the three models
for local mean stress estimation in the context of multiple stress data
groups measured from nearby locations. Section 3 presents application
of the three models to real-world stress data groups to demonstrate how
the Bayesian hierarchical model improves mean stress estimation for
each location, followed by a simulation study to further demonstrate
the efficacy of the hierarchical model using simulated stress data in
Section 4. Section 5 presents a discussion of the results, before a
summary and conclusions provided in Section 6.

This paper explicitly focuses on novel application of Bayesian hi-
erarchical modelling to improved statistical estimation of the mean
stress state at a location by means of borrowing information from stress
tensor data measured from nearby locations. Hence, a detailed account
of stress measurement methods regarding their theory, equipment and
procedure is beyond the scope of this paper, but can be readily found
elsewhere [e.g., Refs. 2, 3]. It is worth noting that the quantified uncer-
tainty associated with a mean stress estimate reflects a combination of
numerous uncertainty sources under a statistical model used, with the
major contribution from small numbers and large natural variability of
stress data.

2. Models for local mean stress estimation

To facilitate demonstration of Bayesian hierarchical modelling for
local mean stress estimation, the following section provides a concise
and necessary introduction to the basics of hierarchical modelling and
the two alternative conventional modelling approaches (i.e., no pooling
and complete pooling approaches) when dealing with data which are
structured in groups.

2.1. Basics

Consider a case of fitting a statistical model to multiple data groups
𝑦𝑗 (𝑗 = 1, 2, . . . , 𝐽 ), each of which has 𝑛𝑗 data observations 𝑦𝑖𝑗 (𝑖 =
1, 2, . . . , 𝑛𝑗) and for which group-specific model parameters 𝜃𝑗 are
to be estimated. Note that 𝑦𝑖𝑗 denotes the 𝑖th observation in the 𝑗th
data group 𝑦𝑗 . In general, there are three types of statistical models
for the analysis of such grouped data, namely no pooling, complete
pooling and partial pooling (hierarchical) models. Abstract forms of the
three models are illustrated by the directed graphs in Fig. 2, in which
the nodes (i.e., circles) and edges (i.e., solid-line arrows) represent
quantities and dependence between them, respectively.

In a no pooling model, the data of each group 𝑦𝑗 are analysed inde-
pendently to give estimation of their respective group-specific param-
eters 𝜃𝑗 with no contribution from the other groups. This is equivalent
to assuming independent group-specific parameters, i.e., no similarity
between them. In a complete pooling model, at the other extreme, all
groups are pooled together into a single large dataset to give estimation
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Fig. 2. Abstract forms of no pooling, hierarchical and complete pooling models (modified after26,33).
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of a set of common parameters 𝜃. This implies the assumption that
roup-specific parameters are identical (𝜃1 = 𝜃2 = . . .= 𝜃), i.e., no
ifference/heterogeneity between them. In practice, no pooling mod-
lling is the usual approach to geotechnical data analysis as data from
ach individual site/study are usually analysed independently,7,9,39 and
omplete pooling modelling is the common approach when analysing
dataset compiled from several sites/studies.40–43 However, both ap-

roaches suffer from serious shortcomings in geotechnical data analysis
s well as stress analysis: as the no pooling model ignores information
rom other sources, it may give unreliable parameter estimations when
pplied to a small data group; the complete pooling model is clearly
nappropriate in the presence of significant between-group difference,
.g., large geological difference between sites and stress heterogeneity
etween locations.

Hierarchical models do not make assumptions regarding the degree
f similarity between parameters 𝜃𝑗 of different groups (i.e., either
aving independent parameters as in the no pooling model or having
dentical parameters as in the complete pooling model); instead, it
ets the data inform the similarity between group-specific parameters
𝑗 through assuming that 𝜃𝑗 ’s arise from a common population dis-
ribution whose parameters 𝜙 are unknown. This is known as the

assumption of exchangeability.24–26 Thus, a hierarchical model allows
each individual group-specific parameter 𝜃𝑗 to be not only informed
directly by its own data 𝑦𝑗 , but also indirectly by the data in other
groups via the assumed 𝜃𝑗 ’s population, as illustrated in the middle
graph of Fig. 2. This borrowing of information across groups is referred
to as partial pooling of data, and can be thought of as a continuous
generalization of the two extremes of no pooling and complete pooling
which both rely on overly strict assumptions (i.e., independent and
identical group-specific parameters).

The mathematical basis of the concept of partial pooling is well ex-
plained in the literature [e.g., Refs. 24–26, 44], and is briefly recounted
here to provide some insights into the operation of hierarchical models.
Consider a simple hierarchical model that estimates the means of 𝐽
groups of normally distributed data 𝑦𝑗 ∼ Normal(𝜃𝑗 , 𝜎2𝑗 ) (𝑗 = 1, 2, . . . , 𝐽 ),
where the parameters of the group means 𝜃𝑗 are themselves assumed to
follow a common normal population distribution 𝜃𝑗 ∼ Normal(𝜇𝜃 , 𝜎2𝜃 ).
or each group 𝑗, the hierarchical estimate of the group mean 𝜃𝑗 can
e approximated as a variance-weighted average of the mean �̄�𝑗 of the
ata in that group (i.e., the no pooling estimate of 𝜃𝑗) and the mean 𝜇𝜃
f 𝜃𝑗 ’s population (i.e., the complete pooling estimate of 𝜃𝑗):

̂hier
𝑗 ≈

𝑛𝑗
𝜎2𝑗
�̄�𝑗 +

1
𝜎2𝜃
𝜇𝜃

𝑛𝑗
𝜎2𝑗

+ 1
𝜎2𝜃

= (1 − 𝜔𝑗 )�̄�𝑗 + 𝜔𝑗𝜇𝜃 , (2)

here 𝑛𝑗 is the number of data in group 𝑗, 𝜎2𝑗 and 𝜎2𝜃 are the within-
roup variance of the data 𝑦𝑗 in group 𝑗 and the between-group
ariance of the group means 𝜃𝑗 , respectively, and

𝑗 =
𝜎2𝑗 ∕𝑛𝑗

2 2
= 1

2 2
(3)
3

𝜎𝑗 ∕𝑛𝑗 + 𝜎𝜃 1 + 𝑛𝑗𝜎𝜃∕𝜎𝑗
s known as the ‘‘pooling factor’’ that reflects the degree of pooling of
he hierarchical estimate �̂�hier

𝑗 of group 𝑗 towards its population mean
𝜃 relative to the data mean �̄�𝑗 of group 𝑗 on a unit scale, that is,
he relative amount of information borrowed from other groups. The
xtreme possible values, 𝑤𝑗 = 0 and 1, correspond to the limiting
ases of no pooling (�̂�hier

𝑗 = �̄�𝑗) and complete pooling (�̂�hier
𝑗 = 𝜇𝜃),

respectively.
Eqs. (2) and (3) indicate that: (i) as more data are obtained for group

𝑗 (i.e., increasing sample size 𝑛𝑗), the pooling factor 𝜔𝑗 decreases and
thus the hierarchical estimate �̂�hier

𝑗 tends to the no pooling estimate
�̄�𝑗 (less information from other groups); (ii) a smaller between-group
variance 𝜎2𝜃 relative to the within-group variance 𝜎2𝑗 (i.e., more similar-
ity between groups) leads to more pooling of the hierarchical estimate
towards the population mean 𝜇𝜃 (i.e., more information from other
groups). This explanation shows why the hierarchical model can be
thought of as a continuous generalization of the two extremes of the no
pooling and complete pooling models, and how it allows the parameters
of each individual group to be informed indirectly by other groups.

In the context of local mean stress estimation, the use of the no
pooling model and complete pooling model is equivalent to respectively
assuming no similarity and no difference between the mean stress states
at nearby locations. However, as noted before, our general understand-
ing is that mean stress states at nearby locations may have, more or less,
some degree of similarity, rather than being either entirely different or
identical. Hence, the more suitable hierarchical model may be used, as
it allows for accommodation of the possible similarity between mean
stress states at nearby locations and may thereby achieve borrowing of
information across stress data groups from nearby locations.

2.2. No pooling model

Using a no pooling model, stress data from each location are anal-
ysed independently to estimate the mean stress state at that location,
and this is how stress data are customarily analysed in practice. In
a previous work by the authors, a basic Bayesian multivariate nor-
mal (MVN) model was proposed for local mean stress estimation and
uncertainty quantification given a stress data group measured within
a local rock volume.20 In the context of multiple nearby locations,
the no pooling model is simply a separate application of the basic
Bayesian MVN model to the stress data group from each location and
its likelihood function for group 𝑗 is given in a compact form as

𝐬𝑖𝑗 ∼ MVN
(

µ𝑗 ,Σ
)

, (4)

where 𝐬𝑖𝑗 =
[

𝜎𝑥(𝑖𝑗) 𝜏𝑥𝑦(𝑖𝑗) 𝜏𝑥𝑧(𝑖𝑗) 𝜎𝑦(𝑖𝑗) 𝜏𝑦𝑧(𝑖𝑗) 𝜎𝑧(𝑖𝑗)
]⊤ ∈ R6 denotes the 𝑖th

measured vector of the six distinct stress tensor components at location
𝑗 defined in a common 𝑥-𝑦-𝑧 Cartesian coordinate system of 𝑥 East, 𝑦
North and 𝑧 vertically upwards, and µ𝑗 =
[

𝜇𝜎𝑥(𝑗) 𝜇𝜏𝑥𝑦(𝑗) 𝜇𝜏𝑥𝑧(𝑗) 𝜇𝜎𝑦(𝑗) 𝜇𝜏𝑦𝑧(𝑗) 𝜇𝜎𝑧(𝑗)
]⊤ ∈ R6 and Σ ∈ R6×6 is the
mean stress vector of interest and the covariance matrix representing
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the stress variability for location 𝑗, respectively. Note that here we
assumed a common covariance matrix Σ for all locations instead of
location-specific covariance matrices, given that only local mean stress
is of interest in this paper and also stress data measured at a location
are sometimes less than the required number (at least 7) for robust
estimation of a 6 × 6 covariance matrix.16

Throughout this paper, we write the likelihood function in a com-
pact form as Eq. (4) to avoid its explicit multiplicative form of the prob-
ability density function of the MVN distribution that may overwhelm
the readers like:

𝑝(𝐬1𝑗 ,… , 𝐬𝑛𝑗 𝑗 |µ𝑗 ,Σ) =
𝑛𝑗
∏

𝑖=1
(2𝜋)−3

√

|Σ| exp
(

−1
2
(

𝐬𝑖𝑗 − µ𝑗
)⊤

Σ−1(𝐬𝑖𝑗 − µ𝑗
)

)

(5)

Here, to reflect a lack of prior knowledge about the specific values
of parameters, we assign weakly informative priors to the parameters
µ𝑗 and Σ. For the mean vector µ𝑗 of a MVN distribution, a common
prior choice is the multivariate normal distribution with hyperparam-
eters of mean vector µ0 ∈ R6 and covariance matrix Σ0 ∈ R6×6.
To express our weak prior knowledge that the values of the normal
(i.e., 𝜇𝜎𝑥(𝑗), 𝜇𝜎𝑦(𝑗) and 𝜇𝜎𝑧(𝑗)) and shear (i.e., 𝜇𝜏𝑥𝑦(𝑗), 𝜇𝜏𝑥𝑧(𝑗) and 𝜇𝜏𝑦𝑧(𝑗))
components of the mean stress vector µ𝑗 respectively most likely (with
roughly 0.95 probability) fall between 10 ± 50 MPa and 0 ± 15 MPa,
we set µ0 =

[

10 0 0 10 0 10
]⊤ MPa with a vector of variances to be

(252, 7.52, 7.52, 252, 7.52, 252) MPa for µ𝑗 ’s components and zero
covariance between these components, as follows:

µ𝑗 ∼ MVN
(

µ0 =
[

10 0 0 10 0 10
]⊤ MPa,

Σ0 = diag(252, 7.52, 7.52, 252, 7.52, 252) MPa2
)

,
(6)

where diag(⋅) is the diagonal matrix operator.
For the prior choice for covariance matrix Σ, it is advocated to

decompose it into a vector of six standard deviations ς ∈ R6 and a
correlation matrix Ω ∈ R6×6, and such a decomposition allows us to
specify separate priors for the correlation matrix and each standard
deviation component, thereby giving us the flexibility to better express
prior information.24,28,45 For each standard deviation of ς, a normal
distribution with mean 0 MPa and standard deviation 5 MPa truncated
below 0 is specified to express our only weak prior knowledge about
its value; that is, the standard deviation associated with each stress
tensor component will most likely lie between 0 and 10 MPa (with
approximately 0.95 probability). For the prior choice for correlation
matrix Ω, the LKJ distribution, named after the authors in Ref. 46, is
recommended to be used as the default.24,28,47,48 The LKJ distribution
can be considered as a multivariate generalization of the symmetric
beta distribution, and is expressed by a single shape parameter 𝜂 > 0.
For example, for 𝜂 = 1, the marginal probability density is uniform
between −1 and 1 for all correlation components, and with larger 𝜂
the marginal density increasingly concentrates around 0 and therefore
the correlation matrix tends to the identity matrix. For more details
on prior choice for covariance matrix as well as the LKJ distribution,
we refer the interested readers to the works.20,24,28,46,47 Here, a LKJ
distribution with a small shape parameter 𝜂 = 5 is assigned to the
correlation matrix Ω to reflect a lack of prior knowledge about the
specific values of the correlations between the six distinct stress tensor
components. The weakly informative priors for Σ discussed above are
summarized as follows:
Σ = diag(ς)Ω diag(ς)

ς ∼ Normal(0, 52) MPa, truncated below 0
Ω ∼ LKJ(𝜂 = 5)

. (7)

2.3. Complete pooling model

The complete pooling model is the application of a statistical model
4

(i.e., the basic Bayesian MVN model herein) to the combined stress
data from all nearby locations under consideration, implying the as-
sumption that these locations have an identical local mean stress state
µ. This is generally an unrealistic assumption as stresses often display
natural variability, even in a small domain.2,49–52 Notwithstanding
being uncommon in local mean stress estimation, in this paper the
complete pooling model is briefly demonstrated in comparison with
the customary no pooing model and the proposed hierarchical model
in order to statistically emphasize its inappropriateness. The likelihood
function of the complete pooling model is written as

𝐬𝑖𝑗 ∼ MVN
(

µ,Σ
)

, (8)

and the weakly informative priors for µ and Σ are

µ ∼ MVN
(

µ0 =
[

10 0 0 10 0 10
]⊤ MPa,

Σ0 = diag(252, 7.52, 7.52, 252, 7.52, 252) MPa2
)

(9)

and
Σ = diag(ς)Ω diag(ς)

ς ∼ Normal(0, 52) MPa, truncated below 0
Ω ∼ LKJ(𝜂 = 5)

. (10)

2.4. Hierarchical model

Assuming either entirely different or identical mean stress states
at nearby locations is both overly strict and potentially unreasonable.
Instead, it is more reasonable to only recognize that nearby local mean
stress states may have some degree of similarity. The hierarchical
model accommodates such possible similarity by assuming that nearby
mean stress states µ𝑗 arise from a common population distribution, as
previously illustrated in the middle graph of Fig. 2. This assumption
of exchangeability is the essence of the hierarchical model that allows
borrowing of information across stress data from nearby locations; that
is, each location-specific mean stress vector µ𝑗 is not only informed
directly by the stress data of location 𝑗 itself but also informed indi-
rectly by the data of all other locations. The likelihood function of the
hierarchical model can be expressed as

𝐬𝑖𝑗 ∼ MVN
(

µ𝑗 ,Σ
)

, (11)

where Σ is assigned the same weakly informative priors as the no
pooling and complete pooling models as

Σ = diag(ς)Ω diag(ς)

ς ∼ Normal(0, 52) MPa, truncated below 0
Ω ∼ LKJ(𝜂 = 5)

. (12)

Here, a MVN prior distribution is assumed for µ𝑗 ’s to accommodate
their potential similarity and is written as

µ𝑗 ∼ MVN
(

µ0,Σ0
)

, (13)

and the hyper-parameters µ0 and Σ0 are then assigned weakly infor-
mative priors as:

µ0 ∼ MVN
([

10 0 0 10 0 10
]⊤ MPa,

diag(252, 7.52, 7.52, 252, 7.52, 252) MPa2
)

(14)

and
Σ0 = diag(ς0)Ω0 diag(ς0)

ς0 ∼ Normal(0, 52) MPa, truncated below 0
Ω0 ∼ LKJ(𝜂 = 5)

. (15)

Note that in Bayesian inference, there always exist alternative for-
mulations of prior distributions in terms of the choice of the distribution
type and the values of the priors’ parameters, and here we only need
to ensure that the employed priors serves the purpose of generally
allowing the data to dominate the posterior inferences. An informal
prior sensitivity analysis, not reported here for brevity, shows that the
weakly informative priors employed in this paper have served their
intended purpose. In fact, prior sensitivity analysis is essential to any

rigorous Bayesian analysis but is often overlooked in the literature.
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Fig. 3. Posterior estimates of the mean stress vector for each borehole.
3. Application

3.1. Data and Bayesian computation

To demonstrate the three Bayesian models in question for local
mean stress estimation, the 100 high-quality stress tensors measured
from 13 nearby boreholes on the 240 level of the AECL’s URL (referred
to as URL240 hereafter, see Fig. 1) are used as a study example in this
paper, and these stress data are given in Appendix A.

All Bayesian models in this paper were fitted using the modern
Bayesian inference program Stan48 in conjunction with the program-
ming language R.53 Stan provides two Markov chain Monte Carlo
(MCMC) simulation methods to implement Bayesian posterior sam-
pling, namely, the Hamiltonian Monte Carlo (HMC) algorithm and its
adaptive variant the No-U-Turn sampler (NUTS). A detailed introduc-
tion to these MCMC algorithms is beyond the scope of this paper but
can be readily found elsewhere [e.g., Refs. 54–56]. Appendix B provides
the Stan codes of the Bayesian hierarchical MVN model of Eqs. (11)–
(15). Three Markov chains with different initial values were run in
parallel to examine their convergence, and a total of 9000 posterior
draws (i.e., 3000 draws per chain) were simulated to approximate the
posterior distribution of each parameter which are used for further
5

inference (e.g., posterior mean and 95% credible interval).
3.2. Estimation of the mean stress vectors

Fitting the three models in question to the URL240 dataset, Fig. 3
shows the posterior means and the associated 95% credible intervals
(95% CIs) of the six components of the mean stress vector (i.e., 𝜇𝜎𝑥 ,
𝜇𝜏𝑥𝑦 , 𝜇𝜏𝑥𝑧 , 𝜇𝜎𝑦 , 𝜇𝜏𝑦𝑧 and 𝜇𝜎𝑧 ) for each of the 13 boreholes. Note that
for a given parameter, the posterior mean can be taken as the point
estimate, and the 95% CI represents the uncertainty associated with
the estimate and can be directly interpreted as an interval containing
the true value of the parameter with 0.95 probability.24

We first briefly demonstrate why the complete pooling model is
inappropriate for local mean stress estimation. The posterior means
and 95% CIs obtained from the complete pooling model are shown
respectively by the blue solid and dashed lines that traverse each sub-
figure of Fig. 3. Given that the complete pooling model uses combined
stress data from multiple borehole locations to estimate a single mean
stress vector, it expectedly yields less uncertain estimates for the six
mean stress components than those obtained from the no pooling
model, as indicated by the narrower 95% CIs. Despite being desirable at
first sight, these complete pooling estimates are misleading in that their
95% CIs fails to capture the no pooling estimates of many individual
boreholes. For instance, 10 out of the 13 no pooling 𝜇𝜎𝑥 estimates fall
outside the complete pooling 95% CI. This observation suggests that
the complete pooling estimates are not well representative of the mean

stress state at each borehole location and thus statistically confirms
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the inappropriateness of the complete pooling model for mean stress
estimation at the borehole scale. The reason behind this was noted
previously, that is, the complete pooling model ignores the variation
of mean stress states between locations, yet stresses often display
significant variability in nature.

Now we discuss how application of the hierarchical model can
improve local mean stress estimation from the no pooling model that
is customarily used in practice. Fig. 3 shows that for each borehole,
the hierarchical model yields a different but generally more certain
estimate of the mean stress vector than does the no pooling model, as
indicated by the narrower hierarchical 95% CIs in varying degrees for
all six mean stress components. As an example, for borehole RM209,
the no pooling model yields a point estimate of 𝜇𝜎𝑥 of around 16.32MPa
accompanied by a 95% CI of (13.40, 19.23) MPa, while the hierarchical
model gives a more certain 𝜇𝜎𝑥 estimate of 17.36MPa with a narrower
95% CI of (14.94, 19.80) MPa; such more or less uncertainty reduction
is also observed for the other five mean stress components (i.e., 𝜇𝜏𝑥𝑦 ,
𝜇𝜏𝑥𝑧 , 𝜇𝜎𝑦 , 𝜇𝜏𝑦𝑧 and 𝜇𝜎𝑧 ) for the same borehole.

To give a better sense of how the overall uncertainty in the esti-
ated mean stress vector is reduced for each borehole by hierarchical
odelling, here we employ a widely used scalar measure of multi-

ariate dispersion called ‘‘effective variance’’ to quantify the overall
ispersion of the joint posterior distribution of the six mean stress
omponents.57,58 For a multivariate data distribution of dimension 𝑝,

the effective variance is defined as 𝑉𝑒 = |Σ|

1∕𝑝, where Σ is the
covariance matrix of the data distribution and | ⋅ | denotes the matrix
determinant. Hence, the effective variance for the mean stress vector
µ is calculated as the 6th root of the determinant of the covariance
matrix of µ’s posterior distribution. Fig. 4 illustrates the effective
variance for the mean stress vector of each borehole estimated from
the no pooling and hierarchical models, respectively represented by
black crosses and red solid circles. This figure clearly shows different
degrees of reduction in the effective variance (i.e., overall uncertainty)
of the estimated mean stress vector for the 13 boreholes when applying
the hierarchical model. For example, application of the hierarchical
model leads to a noticeable reduction in the effective variance of the
mean stress estimate from 1.27MPa2 to 0.88MPa2 for borehole RM209,
and a slight reduction from 0.51MPa2 to 0.46MPa2 for borehole OC2.
Fig. 4 also shows that smaller stress groups generally exhibit more
overall uncertainty reduction in their mean stress estimates compared
to stress groups with larger sizes, indicating that more information is
borrowed from other stress groups under the hierarchical model. This
phenomenon is previously explained by Eqs. (2) and (3).

The results shown in both Figs. 3 and 4 demonstrate that compared
to the customary no pooling model, the proposed hierarchical model
is able to improve local mean stress estimation simultaneously at each
borehole location by allowing information to be borrowed across stress
data from these nearby boreholes.

3.3. Estimation of the principal mean stresses

In earth sciences, stress state is commonly of particular interest in
terms of principal stresses. Here, we refer to principal stress associated
with the mean stress tensor as principal mean stress, and denote it as µ𝜎
hereafter. Hence, in the following we show how the hierarchical model
may improve the customary no pooling estimation of the principal
mean stress state for each borehole. In the Bayesian framework, the
MCMC simulation provides a straightforward means of computing the
posterior distribution of the principal mean stress µ𝜎 by transformation
of the posterior distribution of the associated mean stress vector µ. The
approach is as follows: for each posterior draw of µ, the eigenvalues
and eigenvectors of its associated stress tensor are calculated to give
one posterior draw of µ𝜎 magnitudes and orientations, respectively;
repeating this procedure for each posterior draw of µ gives the posterior
distributions of µ𝜎 magnitudes and orientations, with the posterior

20,23,59
6

estimates then being determined from them.
Fig. 4. Effective variance (overall uncertainty) reduction for the mean stress vector at
each borehole resulting from the hierarchical model.

Following the approach described above, we obtain the posterior
estimates of the magnitudes and orientations of the three principal
mean stress components (i.e., 𝜇𝜎1 , 𝜇𝜎2 and 𝜇𝜎3 ) for the 13 boreholes
n question resulting from the no pooling and hierarchical models, as
epicted in Figs. 5 and 6. The posterior estimates of the principal mean
tress orientations are displayed using equal-angle lower hemispherical
rojections. For clarity and easier comparison, each hemispherical
rojection has been rotated to place the no pooling posterior mean
rientation of one principal mean stress component at the centre of
he projection, and the no pooling posterior mean orientations of the
ther two principal mean stress components at the top, bottom, left
nd right positions. Similar to 95% CIs, 95% credible regions (CRs)
arked by closed curves delineate the plausible regions within which

he principal mean stress orientations will lie with 0.95 probability.
urther owing to the space constraint, only the principal mean stress
rientation estimates for boreholes OC1 and PH3 are displayed in
ig. 6.

As expected, Figs. 5 and 6 show that application of the hierarchical
odel generally leads to different degrees of uncertainty reduction for

oth the magnitude and orientation estimates of the three principal
ean stress components for each borehole. For example, for borehole
C1, the hierarchical model gives a best estimate of 𝜇𝜎1 magnitude of
2.6MPa with a narrower 95% CI of (20.2, 25.7) MPa compared to the
5% CI of (18.9, 24.9) MPa for the no pooling estimate of 21.2MPa, and
ives a best estimate of 𝜇𝜎1 orientation of 230/24 (trend/plunge) with
95% CR that is substantially smaller than that associated with the

o pooling estimate of 244/27. These observations again demonstrate
hat the proposed hierarchical model is capable of improving the mean
tress estimation in terms of both principal stress magnitudes and
rientations simultaneously for each borehole.

. A simulation study

In this section, we carry out a simulation study to further demon-
trate the advantages of the hierarchical model using simulated stress
ata, particularly the flexibility of the hierarchical model as a continu-
us generalization of the no pooling and complete pooling models.

.1. Data generation

We simulate multiple stress data groups corresponding to multiple
ocations from the hierarchical model, i.e., µ𝑗 ∼ MVN

(

µ0,Σ0
)

and
𝑖𝑗 ∼ MVN

(

µ𝑗 ,Σ
)

with assumed values for parameters µ0, Σ0 and

Σ. The stress data simulation process commences with simulating a
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T
P

Fig. 5. Posterior estimates of the principal mean stress magnitudes for each borehole.
able 1
arameter values of the three simulation scenarios.
µ0 (MPa) Σ0 (MPa2) Σ (MPa2)
[

20 5 −1 15 2 10
]⊤ 25 ×Σ diag

(

22 , 12 , 12 , 22 , 12 , 22
)

[

20 5 −1 15 2 10
]⊤ 1∕5 ×Σ diag

(

22 , 12 , 12 , 22 , 12 , 22
)

[

20 5 −1 15 2 10
]⊤ 1∕25 ×Σ diag

(

22 , 12 , 12 , 22 , 12 , 22
)

mean stress vector µ𝑗 for location 𝑗 from µ𝑗 ’s MVN population given
µ0 and Σ0, followed by generating a group of stress vector data 𝐬𝑖𝑗 for
location 𝑗 from the MVN stress distribution given µ𝑗 and Σ. Here, we
consider three simulation scenarios for the assumed parameter values,
as summarized in Table 1.

The covariance matrix Σ0 and Σ respectively represents between-
location variation and within-location variation in the stress data,
and hence the three scenarios correspond to three different levels of
between-location similarity, i.e., little, moderate and high between-
location similarity. For each scenario, 10 stress data groups of a com-
mon group size of 8 (i.e., 𝑗 = 1, 2, . . . , 10 and 𝑖 = 1, 2, . . . , 8) were
simulated and then used to fit the three models (i.e., the no pooling,
complete pooling and hierarchical models) given in Section 2. From the
simulation results, pooling factors and effective variances are calculated
for comparison between the three simulation scenarios. Note that the
purpose of the simulation study is merely to use different stress data
to further demonstrate the advantages of the proposed hierarchical
model in local mean stress estimation, so neither different assumed
parameter values nor different numbers and sizes of stress data groups
are considered here.

4.2. Simulation results

Fig. 7 illustrates the pooling factor of the hierarchical mean stress
estimate associated with each group for each of the three simulation
scenarios. As noted in Section 2.1, the pooling factor of the hierarchical
estimate of one group can be interpreted as a measure of the amount of
information borrowed from other groups relative to that group’s own
7

information on a unit scale ranging from no pooling to complete pool-
ing. It is seen in Fig. 7 that when increasing between-group similarity
(from simulation scenario 1 to 3), each group expectedly borrows more
information from other groups relative to its own, thereby leading to
more pooling of the hierarchical mean stress estimates indicated by
increasingly larger pooling factors. It is noteworthy that for simulation
scenario 1, the pooling factors of the 10 stress groups are all close to
0, indicating that the hierarchical model tends to the no pooling model
when there is little similarity between stress data groups. Fig. 8 depicts
the effective variance (overall uncertainty) reduction for the mean
stress estimate of each group between the no pooling and hierarchical
models for each of the three simulation scenarios. Apparently, as more
similarity between stress data groups are present, the hierarchical
model is able to borrow more information across groups accordingly
(larger pooling factors) and hence generally leads to more reduction in
the overall uncertainty in the mean stress estimates.

This simple simulation study above again demonstrate the hierar-
chical model can give improved local mean stress estimation simul-
taneously for each of the nearby locations than does the customary
no pooling model. More importantly, it confirms that the hierarchical
model is indeed a generalization of the conventional no pooling and
complete pooling models which both involve extreme assumptions
regarding the level of between-group similarity, and provides a flexible
framework that allows simultaneous and adaptive borrowing of infor-
mation across stress data from nearby locations via accommodating
possible between-location similarity. For these reasons, the hierarchical
model should be preferred for local mean stress estimation when stress
data from multiple nearby locations are available.

5. Discussion

Local mean stress is an important input parameter to many applica-
tions in rock mechanics and geomechanics. We have demonstrated that
given a number of stress data groups measured from nearby locations,
the Bayesian hierarchical model developed in this paper is able to both

quantify probabilistically and reduce uncertainty in the estimated mean
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Fig. 6. Posterior estimates of the principal mean stress orientations for boreholes OC1 and PH3.
Fig. 7. Pooling factors of the hierarchical estimates for the three simulation scenarios.

stress state for each location through borrowing information across
stress data from nearby locations. Such abilities are particularly impor-
tant when facing limited stress measurement data and/or significant
natural stress variability in a local volume. Moreover, probabilistic
uncertainty quantification and reduction in mean stress estimation not
8

only permits probabilistic implementation of further analyses in other
Fig. 8. Effective variance reduction from the no pooling to the hierarchical model for
the three simulation scenarios.

applications involving mean stresses, but also gives more accurate
analysis results.

In this paper, we used weakly informative priors to demonstrate
how the Bayesian hierarchical model allows information to be bor-
rowed across stress data from nearby locations. This hierarchical model
may be extended to incorporate other available stress information
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Table A.1
In situ stress tensors measured on the URL’s 240 level interpreted using the anisotropic model [from Ref. 9].

No. Stress tensor components (MPa) Borehole No. Stress tensor components (MPa) Borehole

𝜎𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧 𝜎𝑦 𝜏𝑦𝑧 𝜎𝑧 𝜎𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧 𝜎𝑦 𝜏𝑦𝑧 𝜎𝑧
1 17.25 8.11 −0.44 19.27 5.48 13.08 RM209 51 22.38 9.94 3.77 27.41 3.78 18.72 OC7
2 14.31 5.66 −0.76 18.12 5.13 15.97 RM209 52 19.61 8.41 1.42 18.64 5.34 12.05 OC7
3 15.63 7.39 −0.60 17.22 6.36 9.95 RM209 53 20.39 8.97 4.29 23.74 5.67 17.46 OC7
4 18.45 7.96 −1.06 20.59 5.02 16.26 RM209 54 25.35 10.29 0.25 22.21 4.00 15.35 OC7
5 16.35 6.43 −0.28 16.40 5.23 15.65 RM209 55 17.24 3.61 4.45 15.69 4.44 18.16 OC6
6 10.93 3.19 1.95 15.58 6.97 13.40 OC3 56 22.06 3.45 3.20 18.24 4.07 17.89 OC6
7 12.19 0.79 3.62 17.28 −0.14 13.73 OC3 57 26.49 0.67 3.52 20.89 5.07 23.83 OC6
8 14.22 3.89 1.04 19.29 7.37 15.29 OC3 58 20.91 −1.77 2.63 17.66 3.95 24.23 OC6
9 10.47 0.72 2.35 18.64 8.58 15.60 OC3 59 29.70 4.58 3.09 24.08 7.20 24.12 OC6
10 12.83 6.88 −0.57 19.74 5.08 10.03 OC3 60 21.18 0.65 4.46 16.65 3.85 23.48 OC6
11 12.58 3.73 −0.49 19.80 7.01 13.03 OC3 61 32.41 1.02 2.45 21.83 5.31 31.56 OC6
12 14.17 4.72 0.58 16.89 6.24 12.94 OC3 62 27.52 4.79 −4.22 20.21 −0.70 17.17 OC6
13 13.12 0.68 3.80 9.66 4.80 21.03 OC4 63 16.10 7.99 3.39 19.43 4.28 11.97 PH3
14 19.35 −3.13 −3.62 7.27 −1.36 10.38 OC4 64 16.71 7.04 3.38 21.10 5.95 13.39 PH3
15 16.97 4.38 6.28 14.61 6.08 15.92 OC4 65 16.20 8.44 3.35 20.82 4.84 11.38 PH3
16 21.17 7.00 5.69 18.26 5.38 15.77 OC4 66 16.60 7.91 2.88 23.55 6.26 12.45 PH3
17 22.55 7.56 7.05 20.85 6.51 15.40 OC4 67 18.04 9.18 3.65 21.66 5.11 14.40 PH3
18 29.16 8.50 4.67 17.95 5.14 15.79 OC4 68 21.35 4.20 2.48 21.44 2.64 12.01 OC2
19 15.03 9.38 3.86 19.69 6.95 10.78 OC4 69 30.08 4.35 −8.61 24.60 13.39 18.13 OC2
20 24.99 8.87 −6.24 17.87 −4.50 12.85 OC4 70 31.77 2.28 0.10 27.69 0.69 15.84 OC2
21 20.29 11.23 3.42 20.25 5.32 14.36 OC4 71 20.62 4.08 0.81 15.15 −2.26 5.93 OC2
22 15.90 8.10 1.26 17.40 10.27 13.50 ORT1 72 21.61 4.89 −2.39 20.26 −1.27 13.12 OC2
23 16.54 9.59 9.24 27.84 9.52 12.92 ORT1 73 22.42 3.77 1.96 20.67 3.16 12.41 OC2
24 19.11 9.12 4.17 21.58 8.02 17.91 ORT1 74 23.14 5.29 −4.11 18.69 −2.16 15.38 OC2
25 18.01 7.79 3.30 19.88 8.08 17.11 ORT1 75 22.50 3.04 −4.83 17.66 −2.50 14.84 OC2
26 18.22 8.12 5.71 17.72 9.49 16.06 ORT1 76 21.57 5.36 0.00 20.16 1.06 11.07 OC2
27 16.50 7.86 1.84 26.27 7.13 18.73 ORT2 77 18.93 3.01 3.48 18.84 3.98 13.83 OC2
28 21.10 10.96 −0.83 32.78 2.30 22.52 ORT2 78 24.52 4.71 −3.55 20.33 −1.77 11.65 OC2
29 17.19 8.65 1.72 25.55 5.39 16.26 ORT2 79 21.67 3.91 −6.82 16.36 −2.65 16.67 OC2
30 13.11 7.78 0.18 22.04 0.74 17.05 ORT2 80 21.34 5.35 −2.11 18.64 −1.27 10.92 OC2
31 18.36 6.74 0.63 26.89 2.90 19.86 ORT2 81 23.37 6.38 −2.05 19.16 −0.78 7.87 OC2
32 13.73 5.84 1.29 21.73 7.95 16.34 ORT2 82 23.60 5.95 −0.52 21.47 −0.25 11.82 OC5
33 17.55 7.91 1.06 18.55 5.87 16.40 ORT3 83 12.95 −2.37 −4.16 13.21 5.39 22.04 OC5
34 20.35 6.26 1.07 14.71 2.74 16.95 ORT3 84 24.31 4.46 1.28 21.27 0.14 15.02 OC5
35 21.37 6.62 1.64 17.98 3.97 17.65 ORT3 85 21.81 2.38 3.42 19.53 3.42 15.76 OC5
36 19.89 5.80 1.36 14.96 4.39 16.05 ORT3 86 20.03 1.10 3.45 20.12 4.42 19.76 OC5
37 17.88 7.59 2.17 17.56 5.99 14.76 ORT3 87 21.59 2.73 3.11 19.77 3.90 16.34 OC5
38 16.77 4.97 1.89 14.81 5.20 16.81 ORT3 88 22.08 4.76 1.70 21.08 2.87 13.24 OC5
39 25.86 12.95 1.69 30.03 2.38 17.12 OC8 89 20.43 5.08 0.71 17.36 1.64 12.31 OC5
40 30.38 10.51 2.18 26.96 3.40 18.05 OC8 90 20.44 5.29 −2.36 15.34 −3.12 8.52 OC5
41 29.08 11.67 −0.23 27.10 2.53 15.62 OC8 91 19.78 4.08 2.73 18.78 1.94 12.25 OC5
42 29.63 12.02 0.83 31.00 5.97 17.37 OC8 92 21.66 4.76 0.43 19.10 1.31 11.75 OC5
43 27.95 13.63 2.82 34.00 4.81 17.34 OC8 93 24.06 2.66 2.99 22.89 4.65 17.34 OC5
44 26.38 9.90 1.31 22.87 3.61 17.46 OC8 94 26.90 1.64 3.19 24.10 5.83 18.30 OC5
45 26.63 9.39 0.19 20.47 1.69 14.41 OC8 95 23.60 3.76 2.71 14.13 1.14 14.87 OC1
46 25.73 11.18 −1.07 23.61 0.44 13.67 OC8 96 15.98 −0.74 0.04 16.41 1.27 17.52 OC1
47 25.31 12.46 2.53 28.86 3.05 15.33 OC7 97 15.55 1.59 1.83 16.92 0.28 16.83 OC1
48 28.59 11.95 2.00 29.86 4.36 16.55 OC7 98 18.91 −0.55 2.04 20.50 1.23 19.39 OC1
49 22.98 11.31 −2.84 29.74 −0.14 14.18 OC7 99 23.84 0.25 1.03 21.72 1.24 15.65 OC1
50 19.36 10.06 3.82 20.45 2.32 10.59 OC7 100 22.65 −0.91 2.17 22.85 2.46 19.50 OC1
sources (see Section 1) in form of informative prior distributions, and
may thus further improve mean stress estimation. In this respect, the
Bayesian hierarchical model can be thought of as a general and pow-
erful framework that allows stress information from different sources
to be logically integrated for mean stress estimation. However, many
challenges are present in developing informative priors from stress
information sources, and the three key ones were already discussed
elsewhere20,23 but are reiterated here for emphasis as follows.

First, development of informative priors requires sound knowledge
of both geology and rock mechanics in order to identify valid stress
information corresponding to each individual source, and also suffi-
cient knowledge of probability and statistics to formulate appropriate
probability distributions to express such information. Second, when
multiple pieces of additional information on the same stress compo-
nents are available (e.g., borehole breakouts and hydraulic fracturing
both inform the orientation of 𝜎1), information aggregation is needed
for which the issues of compatibility between and relative weighting
of pieces of information must be considered. Third, many sources of
stress information are present in terms of principal stresses, and so the
9

Bayesian model needs to be extended to allow specification of priors
on principal stress magnitudes and orientations rather than on stress
tensor components only.

These challenges deserve future investigation in order to make full
use of the valuable additional sources of stress information available in
practice.

6. Summary and conclusions

This paper addresses the crucial problem of how local mean stress
estimation can be improved by borrowing information from stress
data measured from nearby locations, a generally available and im-
portant source that provides additional stress information. Hence, we
presented a novel Bayesian hierarchical model that probabilistically
quantifies uncertainty in local mean stress estimation and allows for
logical borrowing of information across multiple stress data groups
from nearby locations. Using both real and simulated stress data, we
demonstrated that the proposed hierarchical model can improve local

mean stress estimation simultaneously for each location in terms of
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uncertainty reduction. We highlighted that the hierarchical model is
a generalization of the conventional no pooling and complete pooling
models that both rely on overly strict assumptions, and hence should
be preferred for local mean stress estimation when stress data from
multiple nearby locations are available.
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Appendix A

See Table A.1

Appendix B. Stan codes of the Bayesian hierarchical MVN model

data {
int<lower=1> N; // number of observations
int<lower=1> K; // dimension of observations
vector[K] y[N]; // observations
int<lower=1> Ngrp; // number of groups
int<lower=1, upper=Ngrp> grp_id[N]; // group id
}

parameters {
vector[K] mu_tilde[Ngrp];
corr_matrix[K] Omega;
vector<lower=0>[K] sigma;
vector[K] mu0;
corr_matrix[K] Omega0;
vector<lower=0>[K] sigma0;
}

transformed parameters {
vector[K] mu[Ngrp];
cov_matrix[K] Sigma;
cov_matrix[K] Sigma0;
cholesky_factor_cov[K] L0;
Sigma = quad_form_diag(Omega, sigma);
Sigma0 = quad_form_diag(Omega0, sigma0);
L0 = cholesky_decompose(Sigma0);
for (ngrp in 1: Ngrp) mu[ngrp] = mu0 + L0 * mu_tilde[ngrp];
}

model {
// hyperpriors
vector[K] mu1 = [10, 0, 0, 10, 0, 10]’;
matrix[K, K] Sigma1 = diag_matrix([25^2, 7.5^2, 7.5^2, 25^2,
7.5^2, 25^2]’);
mu0 ~ multi_normal(mu1, Sigma1);
Omega0 ~ lkj_corr(5);
sigma0 ~ normal(0, 5);

// priors
for (ngrp in 1: Ngrp)
mu_tilde[ngrp] ~ std_normal();
Omega ~ lkj_corr(5);
sigma ~ normal(0, 5);

// likelihood
for (n in 1: N)
y[n] ~ multi_normal(mu[grp_id[n]], Sigma);
}
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