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Abstract
For the first time in the reversed-field-pinch configuration, trapped electron mode (TEM) with
anisotropies of electron temperature and its gradient is studied by solving the gyrokinetic
integral eigenmode equation. Detailed numerical analyses indicate that TEM is enhanced by
the anisotropy with temperature in the direction perpendicular to the magnetic field that is
higher than that in the direction parallel to the magnetic field when the latter is kept constant.
However, the enhancement is limited, such that TEM is weakened and even stabilized when
the anisotropy is higher than a critical value, due to strong Landau damping. In comparison
with the isotropic case, the lower Landau damping with the higher parallel electron
temperature makes TEM instability easier to excite, which expands the TEM unstable region
in the diagram of density and temperature scale lengths. In addition, it is found that the
electron temperature gradient in the perpendicular direction offers a stronger driving force on
TEM instability than that in the parallel direction. The overall effects of the temperature
gradients of electrons and ions, magnetic shear, safety factor and density gradient on TEM in
the presence of the anisotropies are presented in detail.

Keywords: reversed-field-pinch plasmas, gyrokinetic theory, trapped electron mode,
anisotropies of electron temperature and its gradient

(Some figures may appear in colour only in the online journal)

1. Introduction

Microturbulence has always been a research focus in fusion
plasmas [1, 2]. In particular, ion temperature gradient (ITG)
instability has been proved to be the primary contributor caus-
ing anomalous transport in the core of tokamak plasmas in
theory and experiments. As one of the types of electron drift
waves, trapped electron mode (TEM) is driven by a trapped
electron pressure gradient (electron density gradient and/or
electron temperature gradient), and offers an important effect
on electron anomalous transport. However, most of the for-
mer studies were performed with isotropic plasmas. In fact,

∗ Authors to whom any correspondence should be addressed.

plasma anisotropy is a common phenomenon, especially in
space plasmas [3], where the anisotropy of electron temper-
ature in solar wind has been clearly detected. In fusion plas-
mas, the phenomena of plasma anisotropy in xperiments have
also been found with the application of various heating and
current drive schemes [4–6], such as neutral beam injection
and ion/electron cyclotron resonance heating (ICRH/ECRH).
Moreover, the anisotropy of electron temperature directly acts
on the bootstrap current, which is closely related to the steady-
state scenario in fusion experiments, and has been wildly
studied in tokamaks [7], stellarators [8] and reversed-field-
pinch (RFP) plasmas [9]. Therefore, it is necessary to discuss
the characteristics of microturbulence in anisotropic fusion
plasmas.
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The first theoretical research on ITG mode in anisotropic
plasmas can be traced back to 1988 [10]. Following this, local
kinetic theory and full kinetic theory [11–14] were routine
approaches used to discuss the effects of anisotropy in slab
and toroidal tokamak plasmas. All the results showed that
the higher ion temperature in the perpendicular direction to
the magnetic field had an overall stabilization effect on ITG
mode. But the conclusion was just the opposite for TEM in
tokamak plasmas, where the higher perpendicular temperature
enhanced TEM instability in certain anisotropic strengths, as
shown in gyrokinetic theory [15] and simulation with the code
GKNET [16].

With regard to RFP plasmas, study concerning the
anisotropy remains elusive due to the RFP configuration char-
acteristics. Firstly, most of the previous efforts were devoted
to magnetohydrodynamic (MHD) chaos for the dynamo gen-
eration. Secondly, RFP theory shows that it can only rely on
ohmic heating to heat plasmas; therefore, the demand for auxil-
iary heating is relatively small. Until the so-called quasi-single
helicity or quasi-single axis state appeared in RFP experi-
ments, indicating that the plasma inside the core is better con-
fined and close to similar tokamak levels [17, 18], it had been
recognized that the study of microturbulence in RFP plasmas
requires more attention. On the other hand, anisotropic phe-
nomena have also appeared in RFP experiments. For example,
the EXTRAP-T2 experiment [19] showed that the ions were
heated primarily in the direction parallel to the magnetic field,
and the Madison symmetric torus (MST) experiment had to
consider the plasma to be nearly isotropic after sawtooth crash
heating [20]. The first study of microturbulence in an RFP
can be traced back to 2008 [21], and then gyrokinetic theory
[22–24] and simulation codes [25, 26] further discussed the
characteristics of ITG mode and TEM in an RFP. All the results
show that microturbulence in RFP plasmas is more stable than
those in similar tokamak plasmas, since the Landau damping
is stronger in the former. However, the results also show that
ITG turbulence may be an important contributor to the total
heat transport in RFP helical states [27], and the strong temper-
ature gradient’s microtearing instability may be the dominant
turbulent mechanism [28]. Moreover, the influence of TEM-
driven zonal flow on turbulence has been investigated [29, 30],
and TEM has been further observed in MST experiments [31].
All these phenomena reveal that the study of microturbulence
is equally important to understand the anomalous transport in
RFP plasmas. Until now, no relative work on microturbulence
in anisotropic RFP plasmas has been reported. Therefore, in
this work, an integral eigenmode equation, retaining full ion
kinetic effects and trapped electron nonadiabatic response, is
derived from the linear gyrokinetic equation under the electro-
static limit in RFP plasmas, where the anisotropies of electron
temperature and its gradient are taken into account. Further-
more, the numerical simulation code HD7 (a solver of the inte-
gral eigenmode equation), which has been used for ITG and
TEM study in RFPs [22–24], is adopted and updated. The HD7
code has been widely used in slab [32] and tokamak [33, 34]
plasmas to discuss the characteristics of microturbulence, and
gotten well benchmark with some simulation codes [35].

Therefore, the influence of the anisotropies of electron tem-
perature and its gradient on TEM can be presented in detail
and compared with those in isotropic RFP and similar tokamak
plasmas.

The remainder of this work is organized as follows. In
section 2, the integral eigenmode equation is given. The
numerical results are presented and analyzed in section 3.
Section 4 is devoted to the conclusions and discussion.

2. Integral eigenvalue equation

In a toroidal plasma configuration, the magnetic field is usu-
ally expressed by the toroidal and poloidal components Bϕ

and Bθ as,
B = Bθeθ + Bϕeϕ.

In RFP and tokamak configurations, the magnetic fields pos-
sess different features, such as Bθ ≈ Bϕ in an RFP while
Bθ � Bϕ in a tokamak, which has to be considered in
studies. For example, the poloidal magnetic field Bθ must
be taken into account in the total magnetic field in an

RFP, B =
√

B2
θ + B2

ϕ = Bϕ

√
1 + ε2/q2 = Bϕα, where α =√

1 + ε2/q2 with the safety factor q and inverse aspect ratio
ε = r/R. But it is often ignored in a tokamak, B ≈ Bϕ. More-
over, the Bθ effect leads to q < 1 in an RFP, while q > 1 in a
tokamak.

The quasi-neutrality condition ne = ni is the basic equation
used to describe the low-frequency electrostatic perturbation
φ̃ in hydrogen plasmas. The density of the charged particle
nj ( j = i, e) includes the equilibrium density n j0 and perturba-
tion density ñ j, where ñ j consists of adiabatic and nonadiabatic
responses of charged particles. In an axisymmetric toroidal
geometry, it can be written as

ñ j = −Q jn j0

T j
φ̃+

∫
d3vJ0(ζ)δH̃ j.

Here, the nonadiabatic function δH̃ j is obtained directly from
the linear gyrokinetic equation of the charged particle [21],
meaning that TEM driven by the electron temperature gradient
is the main research object in this work.[

v‖
Rqα

∂x − i
(
ω − ωd j

)]
δH̃ j = −i

(
ω − ω j

∗
)

J0(ζ)

× Q jFM j

T j
φ̃(x), (1)

where Q j, T j and m j are the charge, temperature and mass of
the particle species j, respectively. Here, FM j is the Maxwell
equilibrium distribution, R is the major radius and v‖ is the
particle’s velocity along the magnetic field. Meanwhile, J0(ζ)
is the Bessel function of the zeroth order with ζ2 = k2

⊥v2
t j/Ω

2
j ,

v2
t j = 2T j/m j, Ω j = eB/m jc and k⊥ is the wave number in the

direction perpendicular to the magnetic field. Finally, ωd j and
ω j
∗ represent the effects of magnetic field drifts and plasma

inhomogeneous profiles, respectively.
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2.1. Trapped electron response

This work is devoted to the study of the effect of anisotropies
of electron temperature and its temperature gradient on TEM.
The nonadiabatic response of trapped electrons is obtained by
solving the gyrokinetic equation of trapped electrons, and the
passing electrons are adiabatic.

Firstly, the anisotropy of electron temperature is introduced
in the Maxwell distribution function of electrons in velocity
space,

FMe =
(me

2π

) 3
2 n0e

Te⊥
√

Te‖
exp

(
− me

2Te⊥
v2
⊥ − me

2Te‖
v2
‖

)
. (2)

The electron temperature is presented by Te⊥ and Te‖ in the
directions perpendicular and parallel to the magnetic field,
respectively. An electron temperature anisotropy parameter is
defined as

Λe =
Te⊥
Te‖

− 1. (3)

Here,Λe > 0 means Te⊥ > Te‖, and vice versa. Secondly, the
electron temperature gradient anisotropy is shown as follows,

ωe
∗ = ω∗e‖

[
1 +

1
2
ηe‖

(
mev2

‖
2Te‖

− 1

)
+ ηe⊥

(
mev2

⊥
2Te⊥

− 1

)]
.

Here, ηe‖(=Lne/LTe‖) and ηe⊥(= Lne/LTe⊥) are the electron
temperature gradient parameters parallel and perpendicu-
lar to the magnetic field, respectively. Meanwhile, L−1

ne =
−d ln ne/dr, L−1

Te‖ = −d ln Te‖/dr and L−1
Te⊥ = −d ln Te⊥/dr

are the electron density, electron parallel and perpendicu-
lar temperature scale lengths, respectively. In addition, the
magnetic field drifts ωde,

ωde = ωdeB

(
v⊥
vte‖

)2

+ 2ωdeC

(
v‖

vte‖

)2

,

include the magnetic gradient drift frequency
ωdeB(= kθρe‖vte‖/2LB) with the magnetic gradient scale
length L−1

B = −d ln B/dr, and the magnetic curvature
drift frequency ωdeC(= kθρe‖vte‖ε

2/2q2α2r). Moreover,
ω∗e‖(= ckθTe‖/(eBLne)) is the electron diamagnetic drift
frequency corresponding to the parallel temperature, and
kθ = kθα is the poloidal wave number.

To derive the nonadiabatic response of trapped electrons,
we have to pay attention to two factors. One is the fraction of
trapped electrons, which is

√
2ξ with ξ =

(
εB2

φ0 + ςB2
θ0

)
/B2

0
in isotropic RFPs, and ς < ε induces ξ < ε, while B0, Bφ0 and
Bθ0 are the equilibrium magnetic field in the cylindrical geom-
etry [24]. With regard to the electron temperature anisotropy,
the factor is changed to

√
2ξ(Λe + 1)/(2Λeξ + 1). It indicates

that the fraction of trapped electrons is closely related to the
electron temperature anisotropy. The other factor is the trapped
electrons’ orbit average (i.e. bounce average), which presents
in the gyrokinetic equation of trapped electrons. Under the
assumption of ω � ωbe, where ωbe is the electron bounce fre-
quency, the zeroth order term δH̃e0 of the trapped electron
nonadiabatic response δH̃e after the bounce average can be
written as,

δH̃e0 = −
∞∑

l=−∞

∫ 2lπ+π

2lπ−π

〈(
ω − ωe

∗
) eFMe

Te‖
φ̃
〉

〈ω − ωde〉
δ
(
θ − θ′

)
dθ′ (4)

≈ − ω − 〈ωe
∗〉

ω − 〈ωde〉
e 〈FMe〉

Te‖

∞∑
l=−∞

∫ 2lπ+π

2lπ−π

δ
(
θ − θ′

)
dθ′〈φ̃〉,

where 〈· · ·〉 represents the bounce average. It should be noted
that the bounce average of the product of three terms in the
formula is replaced by the product of three averaged terms,
namely, 〈ωe

∗FMeϕ̃〉 ≈ ωe
∗FMe 〈ϕ̃〉. Here, the deeply trapped

electron assumption and retention a little v‖ effect are consid-
ered [15]. By integrating in the velocity space, the perturbation
of the trapped electron density ñet is given by

ñet = −ne0

√
2ξ
π

1
Λe + 1

∫ ∞

0
e−

t
Λe+1

√
t dt

×
∫ 1

0

ω − 〈ωe
∗〉

ω − 〈ωde〉
G(κ2, t)

dκ2

4F(κ)

×
∞∑

j=−∞
g(θ − 2π j,κ)

∫ +∞

−∞
dθ′g(θ′,κ)φ̃(θ′ − 2π j),

(5)
where

g(θ,κ) =
∫ θr

−θr

δ
(
θ − θ′

)
dθ′√

κ2 − sin2
(
θ′
2

) ,

G
(
κ2, t

)
=

∫ 1
0

e

(
1

Λe+1 −1
)

2εtκ2(1−x2)√
1−x2

dx√
1−κ2x2

K(κ)
.

The other parameters in the function are

〈ωe
∗〉 = ω∗e‖

{
1 −

(
1
2
ηe‖ + ηe⊥

)
+ 2ηe‖tξH(κ) +

1
Λe + 1

ηe⊥t[1 − 2ξH(κ)]

}
,

〈ωde〉 = ωdeB

{
1 + 2ξ

[
1 − κ2 − F(κ)

K(κ)

]}
t

+ ωdeC

[
4ξ

(
κ2 − 1 +

F(κ)
K(κ)

)]
t,

H(κ) =
(
κ2 − 1

)
+

F(κ)
K(κ)

, κ2 = sin2

(
θr

2

)
.

Here, K(κ) and F(κ) are the complete elliptic integrals of
the first and second kinds, respectively, and t = v2/v2

te‖. Mean-
while, θr is the returning point in banana orbit for trapped
electrons, corresponding to the case where the parallel veloc-
ity of the electron is zero. Here, δ(x) is Dirac’s delta function.
The theoretical results obtained here will degenerate back to
those in isotropic plasmas, when anisotropy reverts to isotropy,
Λe = 0, ηe⊥ = ηe‖ [24].

3
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2.2. Ion response

In this work, the ions are treated as isotropic, and the passing
ion response, including the full kinetic mechanisms, is con-
sidered [22] in RFP plasmas, such as the finite Larmor radius
effect, magnetic drifts and plasma inhomogeneity. Based on
the quasi-neutrality equation, the integral eigenmode equation
for electrostatic perturbation in RFP plasmas is written as,

(1 + τi‖)φ̂(k) = −ñet +

∫ ∞

−∞

dk′√
2π

K̃(k, k′)φ̂(k′). (6)

The function K̃(k, k′) is related to the nonadiabatic response of
ions,

K̃
(
k, k′

)
= −i

∫ 0

−∞

ω∗e‖√
2βζ

· e−iωτ · e−
(k−k′)2

4ζ · dτ
λ

×
{

ω

ω∗e‖
τi‖ + 1 − 3

2
ηi +

ηi

λ
− k2

⊥ + k′2⊥
4λ2τi‖

ηi

+ ηi
k⊥k′⊥
2λ2τi‖

I1

I0
+ ηi

(
k − k′

)2

4βζ

}
Γ0

(
k⊥, k′⊥

)
.

(7)

The parameters in the equation are,

λ = 1 + i
εn

εB

ω∗e‖
τi‖

τ , β = 1 + i
2ε · εn

q2α2τi‖
ω∗e‖τ ,

ζ =
τ 2

τi‖β

(
s

qα
εn

)2

ω2
∗e‖, Γ0 = I0

(
k⊥k′⊥
2λτi‖

)
e
−

k2
⊥+k′2⊥
4λτi‖ ,

Lni = −
(

d ln ni

dr

)−1

= Lne, LTi = −
(

d ln Ti

dr

)−1

,

k2
⊥ = k2

θ + k2, k′2⊥ = k2
θ + k′2, s =

r
qα

dq
dr

,

εn =
Lne

R
, εB =

LB

R
, ηi =

Lni

LTi
, τi‖ =

Te‖
Ti

,

and Il(l = 0, 1) is the modified Bessel function of the order l.
More details about the ion response can be found in [21]. Note
that different normalizations are used in the two works, such
as ω → ω∗e, φ̂→ eφ̃/Te, and all the wave number k → ρ−1

s

with ρs =
√

2Te/mi/Ωi in [21], but ω → ω∗e‖, φ̂→ eφ̃/Te‖,
and all the wave number k → ρ−1

s with ρs =
√

2Te‖/mi/Ωi in
this work. All differences are due to the electron temperature
anisotropy.

3. Numerical results

The computer code HD7, using the Raleigh–Ritz method to
solve the Fredholm homogeneous integral equation of the sec-
ond, has been modified from isotropic plasmas to anisotropic
RFP plasmas. The integral eigenmode equation (6) is then
solved numerically with the revised code. The computer
algorithm makes HD7 able to discuss the influence of any
variable on the drift wave by knowing the values of parame-
ters, such as Λe, εn, ηi, ηe, kθ, s and q, but only one variable

Figure 1. Normalized growth rate (a) and real frequency (b) versus
Λe for different ηi.

can be changed at a time. Hence, the radial distributions of
quantities are not required in the calculation. The parame-
ters for the numerical results are τ i‖ = 1.33, s = 1.0, ηe =
5.0, ηi = 0, q = 0.15, εn = 0.2, εB = 0.6, ε = 0.18, ξ = 0.15
and kθρs = 0.8 unless otherwise stated. Note that the accept-
able range of Λe is −1 � Λe < ∞, due to the Λe definition.
Of course, the updated HD7 can also obtain exactly the
same numerical solution in isotropic RFP plasmas [24] when
Λe = 0, ηe⊥ = ηe‖ = ηe.

3.1. Effects of electron temperature anisotropy

Firstly, only the influence of the electron temperature
anisotropy on TEM is considered for the isotropic temperature
gradient ηe⊥ = ηe‖ = ηe.

Figure 1 shows the normalized growth rate and real fre-
quency of TEM as functions of the electron temperature
anisotropy parameter Λe for different ηi values. It should be
noted that changing Λe is equivalent to changing only Te⊥,
because τ i‖ = Te‖/Ti is fixed in the calculation, indicating
that Te‖ is constant. Figure 1(a) shows that TEM instabil-
ity enhances first and then weakens with the increase inTe⊥.
There is a critical value of Λe, corresponding to the turn-
ing point of TEM instability from enhancing to weaken-
ing. Here, the enhancement of TEM instability results from
the increase in the trapped electron fraction, i.e. the frac-
tion for a positive Λe is bigger than that in the isotropic
case,

√
2ξ(Λe + 1)/(2Λeξ + 1) >

√
2ξ. On the other hand, the

4
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Figure 2. Normalized growth rate (a) and real frequency (b) versus ηi and Λe spectrum.

weakening of the instability comes from two aspects: one is
the stronger Landau damping, the other is the energy conser-
vation. In figure 1(b), the real frequency of TEM ωr increases
quickly and approximately linearly with increasing Λe, which
indicates that Landau damping increases quickly with increas-
ing Λe. Within the context of energy conservation, the big-
ger Te⊥ means a smaller Te‖. When Λe is large enough, the
trapped electrons with relatively low parallel velocity restrict
the scale of bounce movement, resulting in the weakening
of TEM instability. Similar phenomena have been found in
tokamak theory [15] and experiments after ECRH [16]. On
the other hand, the critical value of Λe depends on ηi, such
as Λe ≈ 0.38, 0.2 and −0.05 at ηi = 0, 1 and 2, respectively.
Interestingly, the critical value of Λe is smaller and smaller
with increasing ηi, but it is just the opposite in tokamak plas-
mas. The stronger Landau damping in an RFP can explain this
phenomenon. For TEM, ηi plays a stabilizing role in both RFP
and tokamak plasmas. With the combination of the rapidly
increasing Landau damping caused by bigger Λe and the sta-
bilizing effect of ηi, the turning point of Λe gradually moves to
the small Landau damping at smaller positiveΛe, even for neg-
ative Λe. However, the results in tokamak plasmas [15] show
that the real frequency of TEM increases very slowly in a cer-
tain Λe region, which means the increase in Landau damping
is very small. Even when the ηi effect is taken into account,
the effect of the trapped electron fraction on TEM destabiliza-
tion is dominant. The real frequency begins to increase rapidly
when positive Λe is big enough, resulting in rapid stabilization
of TEM with larger Landau damping in a tokamak. There-
fore, the stronger Landau damping in an RFP makes the critical
value of Λe appear earlier than that in a tokamak.

Figure 2 further proves the above conclusions, where a
two-dimensional graph of normalized growth rate and real fre-
quency changing with Λe and ηi is plotted. It is clearly shown
that ηi has a stabilization effect on TEM for a fixed Λe, regard-
less of whether Te‖ � Te⊥ or Te‖ < Te⊥, which is similar to the
results for the isotropic case [24]. Moreover, a big positive Λe

Figure 3. Normalized growth rate (a) and real frequency (b) versus
ηe for different Λe and ηi.

causes a narrow ηi region for the instability. Similarly, the neg-
ativeΛe enlarges the ηi region for TEM instability with smaller
Landau damping. In addition, a bigger positive ηi makes the
critical value of Λe become smaller, and is consistent with the
results of figure 1. However, ηi has a little influence on the real
frequency at a fixed Λe, as shown by the fact that the values of
the real frequency in figure 2(b) change slowly for a fixed Λe,
suggesting that ηi has a minor effect on the Landau damping
for both isotropic and anisotropic RFP plasmas.

5
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Figure 4. Normalized growth rate (a) and real frequency (b) versus
s for different Λe.

Next, the ηe effect on TEM is plotted in figure 3, which
shows that ηe makes TEM unstable, even for anisotropic plas-
mas as expected. The higher the ηe, the larger the driving force
on TEM is. Of course, it is necessary to excite the TEM with
a bigger ηe for a big ηi, which has stabilizing effect on TEM.
The electron temperature anisotropy affects the ηe threshold of
TEM excitation, such that a negative Λe reduces the ηe thresh-
old for exciting TEM instability. As shown in figure 3(a), the
red dash–dot lines for Λe = −0.5 appear at a smaller ηe com-
pared with other lines for a fixed ηi. In contrast, for a large
positive Λe, a bigger ηe is needed to excite TEM. However, it
is conducive to the growth rate of the instability increases with
increasing ηe more rapidly larger Λe, where the enhancing of
the trapped electron fraction by positive Λe plays an impor-
tant role. Meanwhile, the Landau damping is relatively less
affected by ηe, as shown by the slow change in real frequency
in figure 3(b).

The effect of magnetic shear on TEM with temperature
anisotropy is studied in figure 4. The results follow the normal
conclusion that the magnetic shear has an overall stabilizing
effect on microturbulence [36], even for anisotropic RFP plas-
mas. The positive Λe amplifies the stabilizing effect of mag-
netic shear on TEM, so TEM tends to become stable more
quickly with the increase in positive Λe, and vice versa. It
indicates that the free energy of the trapped electrons in the
perpendicular direction is more easily dissipated by magnetic
shear; thus, it decreases TEM instability. In addition, the criti-
cal Λe is 0.38 at ηi = 0; therefore, the growth rate forΛe = 2 is

Figure 5. Normalized growth rate (a) and real frequency (b) versus
kθρs for different Λe.

smaller than that for Λe = 0.38 and decays faster. In contrast,
the higher parallel electron temperature with smaller Landau
damping enlarges the TEM unstable s region. It also shows that
the critical Λe is related to magnetic shear.

The kθ spectra for electron temperature anisotropy are pre-
sented in figure 5, where a new normalization (ω → ω∗

e‖/kθρs)
has been employed to remove kθρs fromω∗e‖. Neglecting the ηi

stabilizing effect, the influences of negative and positiveΛe are
different. TEM is weakened with increasing kθ when the elec-
tron temperature in the perpendicular direction is higher than
that in the parallel direction, especially for kθρs > 1. More-
over, TEM is strongly stabilized by the bigger positive Λe for
higher kθ. This phenomenon is opposite to the results in a toka-
mak [15], where the TEM instability increases with increasing
kθ for any Λe. In RFP plasmas, only a negative Λe gives rise
to an overall destabilizing effect on TEM with increasing kθ.
As mentioned above, a negative Λe induces a smaller Landau
damping effect in RFP plasmas; thus, the rate of the real fre-
quency change with kθρs in figure 5(b) is less than that for
positive Λe. The driving force for the modes of short wave-
length is greater than the whole Landau damping for negative
Λe, leading to the same TEM results in RFP and tokamak plas-
mas (i.e. TEM is more unstable at the shorter wavelength).
Therefore, the Landau damping plays a dominant role in TEM
in RFP plasmas. On the other hand, the red dash–dot lines
(Λe = −0.5) are higher or lower than other curves at different
kθρs, indicating that the critical value of Λe is closely related
to the wavelength. The smaller the wavelength, the closer to
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Figure 6. Normalized growth rate (a) and real frequency (b) versus
q for different Λe.

the negative Λe region the turning point of Λe is, as shown in
figure 1.

The safety factor q in RFP plasmas is small, positive or neg-
ative. The effects of q on TEM are given in figure 6 for different
Λe. The results are symmetrical for positive and negative q,
which is consistent with the square form of q in equation (6).
In addition, the bigger |q| is helpful for the destabilization of
TEM instability for any Λe, especially for a bigger Λe, such
as Λe = 2, since the real frequency and Landau damping for
the bigger Λe are reduced with increasing |q|, i.e. the Landau
damping is weakened at large |q|. This is also different from
that observed in tokamak plasmas [15], where the increase in q
obviously reduces the instability of TEM for large and positive
Λe with q > 1. On the other hand, q also has an effect on theΛe

critical value, such that the results for Λe = −0.5 and Λe = 2
are opposite on the two sides of q = 0.2. Therefore, the bigger
the safety factor, the higher the positive Λe turning point is.

The influence of density gradient scale length on TEM
in plasmas of electron temperature anisotropy is shown in
figure 7, where a new normalization is employed to remove
εn in ω∗e‖. As expected, the steeper and flatter density profiles
provide stronger and weaker driving forces for TEM instabil-
ity, respectively. The electron temperature anisotropy magni-
fies these effects. The higher Te⊥ raises the trapped electron
fraction to make TEM unstable in the small εn region. How-
ever, the enhancement of Landau damping reduces TEM insta-
bility with the increasing εn. Although the higher Te‖ weakens
the driving force for TEM in a small εn region, it enlarges the
εn region of unstable TEM, and even TEM instability in a fairly

Figure 7. Normalized growth rate (a) and real frequency (b) versus
εn for different Λe.

flat density distribution. The negative Λe with smaller Landau
damping is the reason for this expanded TEM instability in the
big εn region. Moreover, the turning point of Λe is also related
to εn, and the εn effect is also included in ηi and ηe.

3.2. Effects of electron temperature gradient anisotropy

The anisotropy of electron temperature and its gradient is
studied in this section.

Figures 8 and 9 show the normalized growth rate and real
frequency of TEM as functions of ηe⊥ (fixing ηe‖ = 5) and
ηe‖ (fixing ηe⊥ = 5), respectively. The numerical results show
some very interesting phenomena. Firstly, ηe‖ and ηe⊥ can
both drive TEM instability in an RFP. This is different from
that in a tokamak [15], where ηe‖ has a stabilizing effect on
TEM. In comparison, the driving force of the perpendicular
temperature gradient ηe⊥ is stronger. TEM instability exists
at ηe⊥ = 5 and ηe‖ = 0 in figure 9(a), except for when Λe =
2, while the growth rate is zero at ηe⊥ = 0 and ηe‖ = 5 in
figure 8(a). This means that even if there is no ηe‖, the per-
pendicular temperature gradient can drive the TEM instability
alone; therefore, the driving force in the perpendicular direc-
tion is stronger. The analysis of real frequency can explain this
phenomenon, where ηe⊥ and ηe‖ decrease and increase the real
frequency, corresponding to weakening and enhancement of
Landau damping, respectively. In addition, the strong Landau
damping and the weak driving effect of ηe‖ reduce TEM insta-
bility in the bigger ηe‖ region. As shown in figure 9(a), the
growth rate decreases with increasing ηe‖ after exceeding a
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Figure 8. Normalized growth rate (a) and real frequency
(b) versus ηe⊥ .

certain ηe‖. Secondly, there is a positive correlation between
temperature anisotropy and temperature gradient anisotropy.
TEM is more unstable for the bigger anisotropies of temper-
ature and its gradient, and vice versa. As mentioned above, a
higher positive Λe causes stronger Landau damping, so a large
temperature gradient is needed to excite TEM instability. The
green-dashed lines show the features of this. For example, the
TEM instability occurs at ηe‖ ≈ 1.6 in figure 9(a) and ηe⊥ ≈ 5
in figure 8(a), respectively. As for the excitation of TEM insta-
bility, a bigger anisotropy of electron temperature with gradi-
ent rapidly increases TEM instability. Finally, an electron–ion
hybrid mode is present when ηe⊥ is extremely large, such
as ηe⊥ > 38.4, 49.2, 53, 57 and 92 for Λe = −0.5, 0, 0.2, 0.38
and 2 in figure 9(a), respectively. It is not the standard TEM
or ITG mode, because the real frequency changes from pos-
itive to negative continuously in the region of ηe⊥. A similar
phenomenon is found in tokamak theory [15] and experiments
[16], but the occurrence point of ηe⊥ is several times smaller
than that of ηe⊥ in RFPs. The anisotropy of electron tempera-
ture synchronization enlarges or reduces the occurrence point
ηe⊥; therefore the hybrid mode is more likely to appear in
higher Te‖ RFP plasmas.

3.3. Electron temperature gradient threshold

In this section, the influence of electron temperature anisotropy
on the electron temperature gradient threshold for excita-
tion of TEM is studied and compared with that in isotropic

Figure 9. Normalized growth rate (a) and real frequency
(b) versus ηe‖ .

RFP plasmas. Here, the anisotropy of the electron temper-
ature gradient is neglected for simplicity, corresponding to
ηe⊥ = ηe‖ = ηe.

Figure 10 shows the relation between the electron den-
sity gradient εn and temperature gradient threshold εTth(εT =
LTe/R = εn/ηe) of TEM excitation. Every curve divides the
graph into two parts. TEM is stable and unstable in the regions
above and below the curve, respectively. In comparison with
isotropic plasmas (Λe = 0), TEM is more difficult to excite
for positive Λe in the big εn region, but is easier to excite for
negative Λe, even for flat density profiles. This seems to con-
tradict with the former results in that the higher Te⊥ can help to
enhance the trapped electron fraction and then increase TEM
instability. In fact, the former results also show that a posi-
tive Λe offers stronger Landau damping, especially the bigger
the positive Λe, the stronger the Landau damping is. The tem-
perature gradient threshold corresponds to the smallest driving
force for TEM instability. Therefore, TEM instability is easy to
excite in the case of negative Λe due to weaker Landau damp-
ing, while it needs a steeper temperature profile when Λe > 0.
Therefore, the negative Λe results in a bigger unstable TEM
region, and Landau damping plays a dominant role in the tem-
perature gradient threshold of TEM excitation. On the other
hand, once TEM instability is excited, a positive Λe increases
the trapped electrons fraction, leading to the effective enhance-
ment of unstable TEM, while TEM instability increases slowly
when Λe < 0 because of the smaller fraction of trapped
electrons. Hence, the conclusion obtained here is consistent
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Figure 10. The temperature gradient threshold εTth versus density
gradient εn for different Λe. The other parameters are the same as
those used in figure 1, except ηi = 0 here.

with the former results. Figure 3(a) also confirms the results
here, where TEM instability always appears first at small ηe

in the case of negative Λe when ηi is fixed, but the growth
rate of TEM with positive Λe increases much faster than that
with negative Λe. Although positive Λe increases the tempera-
ture gradient threshold required to excite TEM instability, the
steeper temperature profile has been detected in the edge of
RFP experiments [37]. This means that TEM may be excited
at the edge of RFP experiments. In addition, the left regions
of the vertical lines indicate that TEMs can be excited with-
out the temperature gradient (εTth →∞), and the steep enough
density profile, such as εn < 0.12, can fully excite TEM insta-
bility. The anisotropy of electron temperature also increases or
decreases the required minimum εn.

4. Conclusion and discussion

A gyrokinetic integral eigenmode equation to describe the
effect of anisotropic electron temperature and its gradient on
TEM is derived in toroidal RFP plasmas. Results from sys-
tematic numerical analyses are presented. The main conclu-
sions are as follows. (1) The anisotropy of electron temperature
enhances TEM instability when the temperature in the direc-
tion perpendicular to the magnetic field is higher than that in
the parallel direction (Λe > 0). However, this enhancement is
limited, and there is a critical Λe, corresponding to the turn-
ing point of TEM instability from enhancing to weakening,
which is related to the fact that the strong Landau damping
plays an important role in RFP plasmas. Moreover, the critical
Λe depends on the plasma parameters, such as ηi, ηe, εn, q, s
and kθρs. (2) Electron temperature anisotropy does not change
the basic effects of ηi, ηe, s, kθρs, q and εn on TEMs, but only
enhances/weakens them. For example, a positive/negative Λe

enhances/reduces the stabilizing effect of s on TEM. (3) The
electron temperature gradients in the perpendicular and par-
allel directions both drive TEM instability, while the driving
force of ηe⊥ is stronger. In addition, an electron–ion hybrid
mode appears when ηe⊥ is big enough, just like that found

in tokamaks. (4) A negative Λe enlarges the TEM unstable
region, which means that the higher electron temperature in
the parallel direction is helpful for the excitation of TEM insta-
bility, where Landau damping has a dominant effect on TEM
excitation.

In this work, only the influence of anisotropic electron tem-
perature and its gradient on TEM has been discussed. We also
need to pay more attention to the effect of plasma anisotropy
on microturbulence-induced transport. In addition, a circu-
lar cross-section of plasmas is assumed to obtain the eigen-
mode equation. Although the Keda Torus eXperiment (KTX)
experiment is a circular cross-section, other RFP experimen-
tal devices have produced a magnetic configuration with a
non-circular cross-section, such as a divertor configuration;
therefore, the non-circular section is an interesting topic for
the future. Moreover, here we only concentrate on the lin-
ear effect of TEM in anisotropic RFP plasmas. Its nonlinear
effects, such as TEM-driven zonal flows that tend to regu-
late turbulence transport, and bootstrap current characteristics
(in particular, when the perpendicular electron temperature is
higher than that in the parallel direction, it induces an increase
in the trapped electron fraction, resulting in an increase in the
bootstrap current fraction), are more meaningful topics for one
to understand physics and to be beneficial to RFP experiments.
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