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Abstract
Heating and acceleration of ions with Kappa distribution functions (with param-
eter 𝜅) in low-beta plasmas, by a low-frequency Alfvén wave, is investigated
using test-particle simulations, yielding interesting new results. As long as the
Alfvén wave amplitude is sufficiently large, the computed net heating energy
of ions becomes independent of the wave frequency and amplitude, always
approaching the same value of mv2

A∕2. The eventual energy of ions is dictated
only by the initial ion energy and the ratio of the magnetic field energy den-
sity to the plasma density. The heating effect of the Kappa ions increases with
𝜅. During the heating process, the ions are picked up by the Alfvén wave and
pitch angle scattered, forming a quasi-isotropic spherical shell velocity distribu-
tion. The Kappa ions are accelerated in the parallel direction, reaching a bulk
flow speed roughly equal to the local Alfvén speed. Higher 𝜅-value in the ini-
tial Kappa distribution leads to faster saturation. The above results may explain
certain features of the ion heating and acceleration in the solar wind and corona.
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1 INTRODUCTION

For a long time, both the coronal heating and the solar wind acceleration problems are the major topics in plasma physics
and plasma astrophysics.[1–6] This question is very important in space environment’s research. It is generally believed
that the interaction between Alfvén waves and particles is a very crucial factor for the heating and acceleration of solar
wind and corona. When the Alfvén wave frequency is far less than the ion cyclotron frequency, the cyclotron resonance
condition does not occur. In this case, ions can still be heated by Alfvén waves, namely via non-resonant wave-particle
interactions.[7–8] Recently, particle heating by low-frequency Alfvén waves have attracted more attention; and most of
research shows that the heating is proportional to the amplitude of Alfvén waves.[8–16] Lu et al.[17,18] specifically studied
the effects of different polarized Alfvén waves on heating and acceleration in parallel directions along the background
magnetic field. In laboratory plasmas, evidences of ion heating by low-frequency Alfvén waves have also been found.[19–22]

Stochastic ion heating by obliquely propagating low-frequency Alfvén waves have also been investigated.[23–27] Their
studies found that, as long as the Alfvén wave amplitude satisfies a certain threshold condition, the ion non-resonant
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gyromotion may turn into stochastic motions due to the non-linear coupling. Their research focused on the ampli-
tude threshold that leads to the stochastic heating. However, it is not entirely clear how the ions can get energy in the
heating process, and how much energy they can gain from the Alfvén waves. Wang et al.[27] discussed the physical pro-
cess of heating and acceleration in relation to stochasticity of ions motion. They found that when the wave amplitude
exceeds the stochasticity threshold, the asymptotic temperature of ions is independent of the Alfvén wave amplitude but
dominated by the Alfvén speed. Dong et al.[28,29] studied the pseudo-heating of ions in the presence of Alfvén waves
and proved that this process can be explained by E×B drift. They also investigate minor ion (such as He2+) heating
via non-resonant interaction with spectra of linearly and circularly polarized Alfvén waves. Proton perpendicular heat-
ing by kinetic Alfvén waves has also been studied systematically by Choi et al.[30,31] More recently, harmonic Alfvén
waves in the magnetosphere have been reported by observations,[32] and their interaction with heavy ions have also been
simulated.[33]

Up to now, plasmas in thermal equilibrium are the most common model of the wave-particle interaction. However,
measurements of plasmas and magnetic fields are very important, if not unique, access to the study of cosmic plasmas.
These measurements are obtained by spacecraft in the planetary magnetospheres and Sun-Earth environment. One of the
significant findings is that the observed velocity-space distributions have been shown to exhibit a non-thermal equilibrium
plasma, which can be described by more general Kappa distribution functions, which in turn are obtained by integrating
the suprathermal population into the otherwise Maxwellian distribution.[34–39] There have already been many studies of
such velocity distributions in various areas of fundamental and space-plasma physics.[40–44] Using the Kappa distribution
has the advantage that the Maxwellian distribution is a special case of the Kappa (𝜅) function at the 𝜅 → ∞ limit. The
modified solutions were derived from that with the Maxwellian velocity distribution. The modified solutions can represent
more general cases. Besides its mathematical generality, like the Maxwellian function, the Kappa velocity distribution is
also a special class of solutions to the Vlasov equation.[45–49]

In this paper, based on the simulated time evolution of the velocity distribution and of the temperature of ions with
an initial Kappa distribution, we present our study on the heating and acceleration of ions by a parallel propagating
low-frequency Alfvén wave, and demonstrate the physical process of ion pickup and pitch angle scattering[50,51] by a
low-frequency Alfvén wave, via non-resonant interaction and stochastic heating. Some of the findings are significant and
quite different from that of Wang et al.[27]

2 PHYSICAL MODEL

The standard isotropic, three-dimensional Kappa distribution function can be written as[39]

f𝜅(v) =
N(

𝜋𝜅𝜃2
)3∕2

Γ(𝜅 + 1)
Γ(𝜅 − 1∕2)

(
1 + v2

𝜅𝜃2

)−(𝜅+1)

, (1)

where 𝜅 is the spectral index, Γ(x) the usual gamma function, and 𝜃 a characteristic speed that has been termed an
effective thermal speed by some authors. The family of 𝜅 ions function may represent very different distributions from
the exponential form to the Maxwellian. In particular, the Kappa distribution has the advantage that the Maxwellian
distribution is a special case of the Kappa function at the 𝜅 → ∞ limit, namely

fm(v) = N

(
1

𝜋v2
th

)3∕2

e−v2∕v2
th , (2)

where vth is the characteristic (thermal) speed, similar to the 𝜃 parameter in the Kappa distribution.
Subsequently, an “equivalent temperature” T of the plasma, is introduced based on the equipartition of energy. We

note that this principle is only appropriate for equilibrium distribution, being not rigorously valid for a non-equilibrium
distribution. Nevertheless, the “equivalent temperature” is a useful concept that has many practical advantages, and has
been widely accepted in practice for non-Maxwellian distributions.[39]

The “equivalent temperature” of ions is calculated, with the Kappa distribution, from the average particle energy,
which is mainly specified by the integral of the second statistical moment. This is related to the per particle average energy,
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E𝜅 , by

E𝜅 = 1
2
< mv2 >= 1

2N ∫ f𝜅(v)mv2dv. (3)

Obviously, the equipartition of energy is strictly applied. The Kappa ions “equivalent temperature,” T𝜅 , can be
expressed as

T𝜅 = 2
3kB

E𝜅 = < mv2 >

3kB
, (4)

where m is the particle mass, kB the Boltzmann’s constant.
In this work, we consider the motion of ions in a thermal non-equilibrium plasma, in the intrinsic presence of an

Alfvén wave with 𝛽 = (𝜃∕vA)2 = 0.01. Consequently, the test particle simulation is adopted. For simplicity, we assume that
the intrinsic Alfvén wave pervades the solar corona and interplanetary space, propagates along a constant background
magnetic field B0 = B0iz, and satisfies the dispersion relation 𝜔 = kvA, where 𝜔 and k are the wave frequency and wave
number, respectively. vA = B0∕

√
𝜇0n0m is the Alfvén wave phase speed, n0 the plasma density.[50,51] The magnetic and

electric fields associated with the Alfvén wave, 𝛿Bw and 𝛿Ew, can be written as

𝛿Bw = Bk
(
cos𝜙kix ± sin𝜙kiy

)
, (5)

𝛿Ew = −vAiz × 𝛿Bw, (6)

where ± corresponds to the right-hand (RH) and the left-hand (LH) polarization of the Alfvén wave, ix and iy
are unit vectors, and 𝜙k = k (vAt − z) denotes the wave phase. The particle motion in the Alfvén wave fields is
given by

dv
dt

=
q
m

[v × (B0 + 𝛿Bw) + 𝛿Ew] , (7)

dr
dt

= v. (8)

Without loss of generality, in the following test-particle simulation, only the LH polarized Alfvén wave is taken
into account. The evolution of the test protons shall be followed. The total magnetic energy of the wave is kept con-
stant. Three values of the wave amplitude will be considered, namely, B2

w∕B2
0 = (0.15, 0.20, 0.25). The frequency of

the Alfvén wave is 𝜔 = 0.0375Ω0, much less than the proton cyclotron frequency Ω0 = eB0∕m. Thus the cyclotron
resonance condition is not satisfied. The equations of motion are solved using Boris algorithm, with time step 𝛥t =
0.025Ω−1

0 [Numerical convergent test with respect to 𝛥t has been performed]. The total number of protons is 162,000 with
the Kappa distribution in the velocity space. Periodic boundary conditions are used. The average parallel velocity and
the “equivalent temperature” are obtained as follows: first, the average parallel velocity v∥ = ⟨vz⟩ and equivalent temper-
ature T𝜅 = (m∕3kB)

∑
i=x,y,z

⟨
(vi − ⟨vi⟩)2⟩ are computed in each grid cell (where the angular brackets denote averaging

over a cell). Then, the resulting quantities are averaged over all grid cells. In this manner, the effect of the average veloc-
ity on the thermal temperature is eliminated at each point, so that only the random motion contributes to the plasma
temperature.[8,26]

At the initial time of the wave and particle interactions, the equivalent initial temperature, T𝜅0, is expressed as

T𝜅0 =
< mv2

0 >

3kB
= 2𝜅

2𝜅 − 3
m𝜃2

2kB
, (9)

or equivalently

𝜃 =
(

2𝜅 − 3
2𝜅

2kBT𝜅0

m

)1∕2

, (10)
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T A B L E 1 Comparison of physical quantities associated with Kappa and Maxwellian
distributions

Physical quantity
Kappa distribution
(𝜿 > 3∕2)

Maxwellian distribution
(𝜿 → ∞)

Average energy E𝜅 = 1
2N

∫ f𝜅(v)mv2dv E = 1
2N

∫ fm(v)mv2dv

Equivalent temperature T𝜅 = 2
3kB

E𝜅 = <mv2>

3kB
T = 2

3kB
E = <mv2>

3kB

Initial equivalent temperature T𝜅0 = <mv2
0>

3kB
= 2𝜅

2𝜅−3
m𝜃2

2kB
T0 = <mv2

0>

3kB
= mv2

th
2kB

Initial average energy E𝜅0 = 3
2

m 2𝜅
2𝜅−3

𝜃2

2
E0 = 3

2
m v2

th
2

Characteristic speed 𝜃 =
(

2𝜅−3
2𝜅

2kBT𝜅0
m

)1∕2
vth =

(
2kBT0

m

)1∕2

Rms of the initial velocities < v2
i0 >i=x,y,z= 2𝜅

2𝜅−3
𝜃2

2
< v2

i0 >i=x,y,z=
v2

th
2

where 𝜃 is the practical characteristic speed, the same as in Equation (1) In the special case of 𝜅 → ∞, the practical
characteristic speed 𝜃 and the initial temperature T𝜅0 reduce to vth and T0, respectively. Similarly, the initial average energy
per particle

E𝜅0 = 3
2

kBT𝜅0 = 3
2

m 2𝜅
2𝜅 − 3

𝜃2

2
. (11)

Clearly, with the isotropic three-dimensional Kappa distribution, the rms (root-mean-square) of the particle initial
velocity becomes

< v2
i0 >i=x,y,z=

< v2
0 >

3
= 2𝜅

2𝜅 − 3
𝜃2

2
. (12)

The relationships between the Kappa and the Maxwellian distributions are summarized in Table 1.

3 HEATING AND ACCELERATION OF IONS

First, we refer to the “stochastic heating” as defined by Wang et al.,[27] which is related to non-resonant heating. Wang
et al.[27] pointed out that, after the non-resonant heating, as long as the wave amplitude exceeds the stochasticity thresh-
old, ions are further heated and accelerated by stochastic processes. They also found that the stochastic heating for ions
with Maxwellian velocity distribution is largely independent of the wave amplitude B2

w. In contrast, the non-resonant
heating is proportional to B2

w with either the Maxwellian distribution[7–11,14] or the Kappa distribution.[16] In this work,
we also include the non-resonant and the stochastic heating with the Kappa distribution. The computed particle heating
depends on the 𝜅-parameter as shown in Figures 1 and 2. In the limit of 𝜅 → ∞ (Maxwellian distribution), our results
recover the findings that obtained by Wang et al.[27] Details are explained below.

The time evolution of the mean ion energy, normalized by mv2
A∕2, versus the normalized timeΩ0t, is shown in Figure 1.

We choose the Alfvén wave amplitudes B2
w∕B2

0 = 0.15, 0.20 and 0.25, all exceeding the stochasticity threshold. The ion
energy is calculated by E𝜅 =< mv2 > ∕2 = (m∕2)

∑
i=x,y,z

⟨
(vi − ⟨vi⟩)2⟩. Cases (a), (b), and (c) correspond to the Kappa

distributions with 𝜅 = 2, 3 and the special case of 𝜅 → ∞ (the Maxwellian velocity distribution), respectively. The final
ion energy E𝜅 max, defined as the “ion kinetic temperature Tkin” by Wang et al.,[27] reaches approximately an identical
value of mv2

A∕2 at the end of the simulation. For the wave with large amplitude exceeding the stochasticity threshold,
the heating is quantitatively close to that by Wang et al.[27] The larger the wave amplitude, the faster the ion energy
approaches the asymptotic value. We find that the net heating energy of ions, in both non-resonant and stochastic heating,
is determined by the Alfvén speed vA. We also find that the final ion energy is not completely equal to mv2

A∕2, either with
the Kappa distribution (for 𝜅 = 2, 3) or with the Maxwellian distribution. In fact the saturated energy is slightly larger
than mv2

A∕2,

E𝜅 max =
3
2

m𝜃2 𝜅

2𝜅 − 3
+ 1

2
mv2

A = E𝜅0 +
1
2

mv2
A. (13)
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F I G U R E 1 The time evolution of the mean ion energy, normalized by mv2
A∕2, versus the normalized time Ω0t

Figure 1 shows (cases (a), (b), and (c) for 𝜅 = 2, 3, and 𝜅 → ∞) the initial and final ion energies normalized by mv2
A∕2,

(E𝜅0,E𝜅 max), being approximately equal to (0.06, 1.06), (0.03, 1.03), and (0.015, 1.015), for the cases (a), (b), and (c), respec-
tively. We set the initial characteristic speed 𝜃2 = 1 and 𝛽 = (𝜃∕vA)2 = 0.01. It is worth noting that the obtained net heating
energy of ions is mv2

A∕2, but the final energy is E𝜅0 + mv2
A∕2. Equation (13) can be further converted to

E𝜅 max = E𝜅0 +
B2

0

2𝜇0n0
= E𝜅0 +

W0

n0
, (14)

by making use of the definition of the Alfvén wave phase speed vA = B0∕
√
𝜇0n0m, and the ambient magnetic field energy

density W0 = B2
0∕ (2𝜇0).[9,10] Equation (14) shows that the final energy of ions depends on their initial energy and the

ratio of the magnetic field energy density to the plasma density, but is not related to the Alfvén wave frequency nor the
amplitude. This holds as long as the stochastic heating condition is satisfied.

Figure 2 plots the average parallel velocity of ions, with the same parameters as in Figure 1. At the initial stage
of heating, the “shaded area” appears, because the non-resonant heating is not yet fully developed. The temperatures
oscillate before reaching the characteristic time scale 𝜋∕(k𝜃).[8] For 𝜔 = 0.0375Ω0, the characteristic time scale is about
837Ω−1

0 . At this point, the curves become smooth, reaching individual values of parallel velocity, which roughly fol-
low the analytic prediction of v∥ = vA

(
B2

w∕B2
0
)
.[8,16] The results are consistent with the theoretical analysis and with the

simulation results of Lu & Li[8] and Liu et al.,[16] but do not agree with the multi-wave simulation results by Wang
et al.[27] Exiting the “shaded area,” the curves saturate towards the Alfvén speed vA, independent of the wave ampli-
tude, though the saturation process itself is faster with larger wave amplitude, and with higher 𝜅-value in the initial
distribution.
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F I G U R E 2 The average parallel velocity of ions, normalized by vA, with the same parameters as in Figure 1

Now, we focus on the temporal behaviour of the “equivalent temperature” of the plasma. The equation of energy is
rigorously applied. Rewriting of Equation (13) yields

3
2

kBT𝜅 max =
3
2

kBT𝜅0 +
1
2

mv2
A, (15)

T𝜅 max = T𝜅0 +
m

3kB
v2

A = T𝜅0 +
m

3kB

𝜃2

𝛽

= T𝜅0

(
1 + 2𝜅 − 3

𝜅

1
3𝛽

)
, (16)

where we have made use of the relation 𝜃2 = (kBT𝜅0∕m) (2𝜅 − 3)∕𝜅. This shows that the maximum heating effect of the
Kappa ions depends on parameter 𝜅 of the initial distribution and on the beta value. Simulation results strongly agree
with the above analytic prediction, as shown in Figure 3, where cases (a) and (b) correspond to the Alfvén wave amplitude
of B2

w∕B2
0 = 0.15 and 0.25, respectively. As examples, we choose the parameters 𝜅 of 2, 3, 6, and 𝜅 → ∞, respectively. The

final “equivalent temperatures” of the plasma are.

𝜅 = 2,T𝜅 max = T𝜅0

(
1 + 1

6𝛽

)
= 17.7T𝜅0; (17a)

𝜅 = 3,T𝜅 max = T𝜅0

(
1 + 1

3𝛽

)
= 34.3T𝜅0; (17b)

𝜅 = 6,T𝜅 max = T𝜅0

(
1 + 1

2𝛽

)
= 51T𝜅0; (17c)
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F I G U R E 3 The time evolution of the “equivalent temperature” of the plasma, normalized by T𝜅0, where cases (a) and (b) corresponds
to the Alfvén wave amplitude of B2

w∕B2
0 = 0.15 and 0.25, respectively

𝜅 → ∞,Tmax = T0

(
1 + 2

3𝛽

)
= 67.7T0. (17d)

The above heating process is almost the same when the wave amplitude reaches a threshold value. To further illus-
trate the non-resonant and the stochastic wave-particle interaction process, we consider one case with the Alfvén wave
amplitude of B2

w∕B2
0 = 0.15 and with the Maxwellian distribution, as shown in Figure 4. The time evolution of the proton

velocity distribution satisfies the energy conservation equation in the Alfvén wave frame[50]

v2
⟂(t) +

[
v∥(t) − vA

]2 = v2
⟂(0) +

[
v∥(0) − vA

]2
, (18)

where v⟂ and v∥ stand for velocity components perpendicular and parallel to the ambient magnetic field. Figure 4 shows
the proton velocity distribution, in the laboratory frame, during the heating process atΩ0t = 0, 250, 1,000, 2,500, 5,000, and
25,000, respectively. Initially, the velocity distribution is three-dimensional isotropic Maxwellian, with the characteristic
speed vth = 0.1vA. The three directional average speed of the proton’s is zero, as shown by the solid sphere centred at (0,
0, 0) in Figure 4a. At Ω0t = 250, protons are picked up in the transverse direction by the Alfvén wave and an average
transverse velocity is obtained. In other words, ions non-resonant heating occurs as shown in Figure 4b. At Ω0t = 1,000,
protons in the vertical direction are captured by the Alfvén wave. In the direction of propagation along the Alfvén wave,
ions gain an average speed due to the effect of phase mixing and the subsequent heating by wave-particle non-resonant
interaction.[8,14] Afterward, when the wave amplitude satisfies the stochastic threshold, the regular movement of protons
transfers to chaotic action. The non-resonance overlap in phase space results in randomization in the particle distribution,
and the stochastic heating starts to occur. In this stage of heating, protons in the velocity space have half sphere distribution
due to pitch angle scattering. The specific process of pitch angle scattering is shown in Figure 4c–f. At Ω0t = 25,000, the
centre of the spherical shell distribution is (0, 0, 1.0)vA, the ion parallel velocity distributes in the range of (0 ∼ 2.0)vA. The
ions attain a bulk parallel speed, which is roughly equal to vA. The motion of ions on the spherical surface in the velocity
space, defined by Equation (18), is attributed to pitch angle scattering.[27]

4 SUMMARY

In this paper, heating and acceleration of low-beta plasma ions with initial Kappa distribution, by a low-frequency LH
polarization Alfvén wave, has been studied by means of test-particle approach. As long as the Alfvén wave amplitude
exceeds the stochasticity threshold, the net heating energy obtained by ions is mv2

A∕2. This process is equivalent to the
protons gaining a net average parallel speed. In particular, the bulk speed is roughly equal to the Alfvén speed, v∥ ≈ vA, in
the laboratory frame. We made detailed study of the physical processes associated with the non-resonant and stochastic
heating. The asymptotically independent heating is due to the pickup process that involves the formation of spherical
shell velocity distribution function as a result of the pitch angle scattering.
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F I G U R E 4 The proton velocity distribution, in the laboratory frame, during the heating process at Ω0t = 0, 250, 1,000, 2,500, 5,000,
and 25,000, respectively

The main results are summarized as follows: (a) the final energy of ions depends on the initial energy and on the
ratio of the magnetic field energy density to the plasma density, but does not depend on the Alfvén wave frequency and
amplitude; (b) at the saturation stage of the simulation, the average v∥ approaches vA. Larger wave amplitude and higher
𝜅 value of the initial distribution lead to faster saturation towards the Alfvén speed; (c) the final heating of Kappa ions
depends on the parameter 𝜅 of the initial distribution and on the beta value. The final heating increases with 𝜅, and as
𝜅 → ∞, it becomes identical to that of the Maxwellian distribution.
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