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Abstract
The gyrokinetic integral eigenmode equation is applied to study ion-temperature-gradient
(ITG) mode in toroidal plasmas with magnetic shear, where the ion temperature and its
gradient are anisotropic. The numerical studies demonstrate that instability of ITG mode is
reduced by an ion temperature anisotropy of higher perpendicular temperature T i⊥ or high
enough parallel temperature T i‖, in which Landau damping plays an important role. The
temperature gradient in the perpendicular (parallel) direction is stronger to drive ITG mode for
large T i⊥ (T i‖). These effects are directly related to the temperature gradient threshold for
excitation of ITG mode. In addition, the synergy effect of magnetic shear and anisotropy of ion
temperature and its gradient is studied in detail, where the combination of magnetic shear and
large parallel temperature has the most obvious inhibitory effect on ITG mode.

Keywords: gyro-kinetic equation, ITG mode, ion temperature and temperature gradient
anisotropy

(Some figures may appear in colour only in the online journal)

1. Introduction

The micro-drift instability has always been the focus of
fusion research since it induces anomalous particle, energy
and momentum transports in tokamaks [1, 2]. The plasma ion
temperature and its gradient are considered isotropic in most
theoretical studies. However, with the wide use of auxil-
iary heating, such as ion cyclotron resonance frequency heat-
ing and neutral beam injection, the plasmas anisotropy is
more and more obvious in the present fusion experimental
machine, as well as the future demo. Therefore, it is neces-
sary to consider the effects of such anisotropy on the drift
wave instabilities responsible for anomalous transport in more
detail.

The first investigation of ion temperature anisotropy on ion
temperature gradient mode can be traced back to Migliuolo’s
work [3] in 1988, he pointed that the anisotropy gave an overall
stabilizing effect in a shearless slab geometry when perpen-

∗ Authors to whom any correspondence should be addressed.
4 These authors contributed equally to this work.

dicular temperature is greater than parallel temperature. Then,
Mathey and Sen [4] used the local kinetic theory to study the
effect of anisotropy of ion temperature and its gradient on ITG
mode in a shearless slab configuration, and applied the the-
ory to the experiments on the Columbia linear machine. They
showed that excitation of ITG mode needs a finite parallel
temperature gradient, and a gradient in the perpendicular tem-
perature can either enhance or diminish the instability. Kim
et al [5] developed the work for a shearless toroidal geom-
etry with a local kinetic theory. Comparing with the results
in a slab geometry, the opposite conclusion in a toroidal sys-
tem was obtained, where the gradient in the perpendicular
temperature cannot stabilize ITG mode, but induces destabi-
lization of the ITG mode just like the parallel temperature gra-
dient does. Later, Song and Sen [6] considered the collision
effects, using local kinetic theory, which means that the mag-
netic shear effect is hardly to be taken into account under the
nonlocal consideration, although a small shear limit was con-
sidered in the work. Furthermore, Dong et al [7] studied the
ion temperature anisotropy effect in a sheared slab geometry
using fluid and kinetic theories, where the anisotropy in ion
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temperature gradient enhanced (reduced) the stabilization
effect from a magnetic shear for η⊥ > η‖(η⊥ < η‖). An
anisotropy of T⊥ > T‖ in ion temperature is found to give an
overall stabilization (destabilization) for low (high) magnetic
shear s ∼ 0.1 (s ∼ 0.4).

In this paper, we extent the work to toroidal plasmas
with magnetic shear. An integral eigenvalue equation, keep-
ing anisotropy of ion temperature and its gradient, magnetic
shear effect, full finite Larmor radius effects, magnetic gra-
dient and curvature drifts, and resonant wave-particle inter-
action, is derived from the linear gyrokinetic equation in
electrostatic limit for the ITG mode. The equation is solved
numerically with the HD7 code [8] and the results are pre-
sented in detail. The synergy of the magnetic shear and the
anisotropy of temperature and its gradient is the main focus.

The remainder of this paper is organized as follows. The
integral eigenvalue equation and physical model are presented
in section 2. The numerical results are shown and analyzed in
section 3. Finally, the brief conclusions are drawn in section 4.

2. Integral eigenvalue equation

In a tokamak configuration, the typical magnetic field is given
as

B =
rB0

Rq
eθ + B0eξ , (1)

where r, θ and ξ are the radial, poloidal and toroidal directions,
respectively. q is the safety factor, R is the major radius of the
torus, B0 is the toroidal magnetic field.

The basic equation for the study of low-frequency elec-
trostatic perturbations in inhomogeneous plasmas is the
quasineutrality condition, ñe = ñi. Here, adiabatic electron
response to the electrostatic perturbation is assumed, and the
perturbed ion density in an axisymmetric toroidal geome-
try is obtained straightly from the gyrokinetic equation [8].
The ballooning mode representation [9] is used to derive the
eigenvalue equation. The equilibrium Maxwell distribution is
written as

FMi =
(mi

2π

) 3
2 n0i

Ti⊥
√

Ti‖
exp

(
− mi

2Ti⊥
v2
⊥ − mi

2Ti‖
v2
‖

)
, (2)

where T i⊥ and T i‖ are the ion temperatures in the directions
perpendicular and parallel to the magnetic field, respectively.
We define an ion temperature anisotropy parameter

Λi =
Ti⊥
Ti‖

− 1.

When Λi > 0, it presents that the perpendicular ion tem-
perature T i⊥ is higher than the parallel temperature T i‖.
Λi < 0 indicates a higher parallel temperature, and Λi = 0
means isotropic plasma temperature. For simplicity, we ignore
trapped particle contribution and v‖ modulation along the
unperturbed particle orbit for passing particles. From the
quasineutrality condition, the Fredholm homogeneous inte-
gral equation of the second kind [10, 11] can be obtained.

The method induced by Dong et al [8] is also employed
in the derivation, where the integration over the perpendic-
ular velocity is performed analytically, while the integration
over the parallel velocity is converted to an integration over
time. Finally, we obtain the integral eigenvalue equation for
ITG mode with ion temperature and its gradient anisotropy in
tokamak plasmas as

(1 + τe + ΛiτeΓ0)φ̂(k) =
∫ ∞

−∞
dk′K(k, k′)φ̂(k′), (3)

where
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and

a = 1 + i
2εnω∗et

(1 + Λi)τe

×
[

(1 + s)(sin θ − sin θ′) − s(θ cos θ − θ′ cos θ′)
θ − θ′

]

λ =
1 − Λi + a(1 + Λi)

2
, ζ =

ω2
∗et2

(1 + Λi)τea

(
s
q
εn

)2

,

θ =
k

skθ
, θ =

k′

skθ
, k2

⊥ = k2
θ + k2, k′2⊥ = k2

θ + k′2,

Γ0 = I0

(
k⊥k′⊥
2λτe

)
e−(k2

⊥+k′2⊥ )/4λτe , LT‖ = −
(

d ln Ti‖
dr

)−1

Ln = −
(

d ln n
dr

)−1

, LT⊥ = −
(

d ln Ti⊥
dr

)−1
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ckθTe

eBLn
.

Here, ω∗e is the electron diamagnetic drift frequency, k is the
Fourier transform of radial variable x, the magnetic shear is
s = (r/q)(dq/dr), Ln and LT are the density and temperature
gradient scale lengths, respectively. η⊥ and η‖ present the ion
temperature gradient parameters in the perpendicular and par-
allel magnetic field directions, respectively. I j( j = 0, 1) is the
modified Bessel function of order j. Also the wave number
k, k′ and kθ are normalized to ρ−1

s with ρs =
√

2Te/mi/Ωi

and Ωi = eB/mic, v⊥ and v‖ are normalized to the ion ther-
mal velocity in the perpendicular vT⊥ =

√
2Ti⊥/mi and par-

allel vT‖ =
√

2Ti‖/mi directions, respectively. The electric
potential perturbation φ is normalized to eφ/T i‖.

The integral eigenmode equation includes full kinetic
mechanisms of the ions, such as magnetic shear, magnetic gra-
dient and curvature drifts, and transit motion along magnetic
field lines.
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3. Numerical results

Computer code HD7 using Raleigh–Ritz method [12] to solve
the Fredholm homogeneous integral equation of the second
kind, has been widely used in the study of micro-drift instabil-
ity in slab [13, 14], tokamak [8, 15] and reversed-field pinch
[16, 17] plasmas. In addition, it has been well benchmarked
with other simulation codes [18], such as GTC, GT3D and
XGC1. On the other hand, most of the previous works focus on
the case that the perpendicular temperature is higher than the
parallel temperature (Λi > 0) and rarely involves the case of
Λi < 0. Taking into account the anisotropy of ion temperature
and its gradient, the code HD7 is upgraded in accordance with
equation (3) in this work. Thus, the influence of the anisotropy
of ion temperature and its gradient on ITG mode is able to be
investigated numerically in detail.

3.1. Synergy of magnetic shear and ion temperature
anisotropy

Firstly, we study the effect of ion temperature anisotropy and
neglect the ion temperature gradient anisotropy for simplicity.
The normalized growth rate and real frequency of ITG mode
versus temperature anisotropy parameter Λi are plotted in
figure 1 for different magnetic shear. The parameters are η⊥ =
η‖ = 3.0, εn = 0.2, kθ = 0.45, q = 1.5 and τ e = 1.0. From the
figure, one can see that the ITG mode becomes stable with
the increasing of Λi values when the perpendicular tempera-
ture is greater than the parallel temperature (T i⊥ > T i‖), which
means Λi > 0. This result may be due to the bigger Λi value
reducing the real frequency of ITG mode, which leads to the
stronger Landau damping. Therefore, the large Λi value can
reduce the instability of ITG mode. This conclusion is consis-
tent with the previous work in slab or local toroidal geometry.
However, ITG mode also can be stabilized when T i⊥ < T i‖,
|Λi| � 0.5 in our cases. This may also be caused by Lan-
dau damping. Although the increase of negative Λi increases
the drift frequency and thus the real frequency of the mode,
reducing Landau damping, it also corresponds to higher par-
allel temperature and higher parallel thermal velocity of the
ions. The increase of parallel velocity also means increase
of Landau damping. Therefore, the behavior of the mode is
result of competition between the two mechanisms and the
latter may produce stronger Landau damping and stabilizing
effect on the modes when the negative Λi increases to a cer-
tain value. In addition, the stable and unstable turning points
change with magnetic shear. The bigger magnetic shear value,
the smaller the turning point |Λi| value is. Moreover, it should
be pointed out that the magnetic shear s = 0.1 stabilizes ITG
mode more effectively and its stabilizing effect even exceeds
that of large magnetic shear (s = 1.5). This result is in agree-
ment with the result in a slab configuration including magnetic
shear effect [7], the lower magnetic shear (s ∼ 0.1) can give an
overall stabilization effect when an anisotropy of T i⊥ > T i‖ is
considered.

The effect of magnetic shear on temperature anisotropy
is further studied in figure 2, where the normalized mode
growth rate versus the normalized poloidal wave number kθ
is presented for s = 0.1 and s = 0.4. The results show that

Figure 1. Normalized growth rate γ/ω∗e and real frequency ω/ω∗e
vs Λi for different s. The other parameters are
η⊥ = η‖ = 3.0, εn = 0.2, kθ = 0.45, q = 1.5, τ e = 1.0.

the growth rate is the highest, intermediate and the lowest
when Λi = 0, 0.5, and 1.0, respectively. This means that the
anisotropy in the direction of T i⊥ > T i‖ gives an overall stabi-
lizing effect whatever the magnetic shear value is. This con-
clusion is different from those in the slab geometry, where
the numerical results in figure 7 of reference [7] show that
the anisotropy in the direction of T i⊥ > T i‖ has an overall
destabilizing effect for s � 0.4. On the other hand, the numer-
ical results show that the stabilization effect is stronger on a
short-wavelength modes when T i⊥ < T i‖ (Λi = −0.5).

Shown in figure 3 are the normalized growth rate versus
kθ with different Λi. In this figure, a new normalization is
employed, where the growth rate is normalized as γkθ/ω∗e ∼
γLn/cs with cs =

√
2Te/mi, in order to compare with the

results in a toroidal plasmas without magnetic shear [5]. The
same parameters as in figure 2 of reference [5] are used,
except for q = 1.5 and s = 0.4, 1.0 in this work. The results
in figure 3(a) of this work and figure 2(b) of reference [5],
that T i⊥ > T i‖ gives an overall stabilizing effect, are simi-
lar. However, the numerical results with different s value in
this work show that, (1) increasing Λi does not give a small
destabilization effect on the long-wavelength modes; (2) there
is not a significant stabilizing effect on the short-wavelength
modes when T i⊥ > T i‖. The opposite is in reference [5],
where the magnetic shear effect is neglected. In addition, the

3
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Figure 2. Normalized growth rate γ/ω∗e vs kθ for different s and Λi.
The other parameters are
η⊥ = η‖ = 3.0, εn = 0.2, q = 1.5, τ e = 1.0.

stabilizing effect on the short-wavelength modes, presented
under the condition ofΛi < 0, is not mentioned in any previous
works, because most of studies are focus on the T i⊥/T i‖ > 1
region.

Now, we consider the normalized growth rate and real
frequency versus magnetic shear under different temperature
anisotropy conditions. From figure 4, one can see that the
growth rate increases, reaches a maximum at about s ≈ 0.65
and s ≈ 0.5 for positive and negativeΛi, respectively, and then
decreases for a fixedΛi when s increases. The anisotropy in the
direction of T i⊥ > T i‖ also gives an overall stabilizing effect
whatever the magnetic shear value is. In addition, a signifi-
cant stabilizing effect is presented when T i⊥ < T i‖, the effect
of magnetic shear in negative Λi region is stronger than that in
positive Λi region in a toroidal system.

3.2. Synergy of magnetic shear and ion temperature
gradient anisotropy

Now, we investigate the effect of the other anisotropy, the ion
temperature gradient anisotropy, keeping the anisotropy of ion
temperature. Shown in figure 5 is the normalized growth rate
as functions of η⊥ or η‖. Three cases, Λi = −0.5, 0 and 1,
corresponding to higher parallel temperature, isotropic tem-
perature and higher perpendicular temperature are given,

Figure 3. Normalized growth rate γkθ/ω∗e vs kθ for different Λi.
The other parameters are
η⊥ = η‖ = 3.0, εn = 0.1, τ e = 1.0, q = 1.5, s = 0.4 in (a) and
s = 1.0 in (b).

respectively. The magnetic shear is set to 0.1, corresponding
to weak magnetic shear regime which is more interesting. The
results confirm the previous work that both η‖ and η⊥ can drive
the ITG instability even in such a weak magnetic shear regime.
In addition, the growth rate increases with η⊥ for a fixed η‖
much faster than it does with η‖ for a fixed η⊥, which means
that the driving force from perpendicular temperature gradi-
ent is stronger than that from parallel one. This conclusion
can be seen by comparing the growth rates at zero points of
the abscissa in figures 5(a) and (b), where the growth rate of
ITG mode at η‖ = 0 and η⊥ = 1 and 3 is higher than that at
η⊥ = 0 with η‖ = 1 and 3 for the three Λi values. It presents
that the perpendicular temperature gradient makes ITG mode
more unstable if ITG mode is driven by a temperature gradient
of same value in one direction only. This conclusion is partially
broken in the negativeΛi region, where the slope of the growth
rate in part (b) for fixing η⊥ while changing η‖ is slightly larger
than that in part (a) for fixing η‖ while changing η⊥. In addi-
tion, the two red curves in figure 5(a) or figure 5(b) still main-
tain the original trend, even the temperature gradient in either
direction reaches a large value. This indicates that the driving
force of the parallel temperature gradient is enhanced when
Λi < 0. We can get some theoretical insight from equation (3)
for this observation. Roughly speaking, the influence of

4



Nucl. Fusion 61 (2021) 046033 M.X. Jia et al

Figure 4. Normalized growth rate and real frequency vs magnetic
shear for different Λi. The other parameters are
η⊥ = η‖ = 3.0, εn = 0.2, τ e = 1.0, q = 1.5 and kθ = 0.45.

parallel and perpendicular temperature gradient mainly
embodied in finite Larmor radius and wave-particle resonance,
respectively, besides the diamagnetic drift which is common
for both. There are three terms in kernel function K(k, k′),
which depend on the parameter of ion temperature anisotropy
Λi, i.e. a, λ and ζ . A simple mathematical manipulation indi-
cates that the involvement of Λi in λ is virtual. a and ζ are
closely related with Λi. On the other hand, the parameter η‖
appears at two places, i.e. −η‖/2 and η‖(k − k′)2/4aζ. The
first term represents the drift while the second term does the
wave particle interaction, including Landau damping. Now it
is clear that ζ is enhanced in the weak magnetic shear region
when Λi is negative.

The results for ion temperature gradient anisotropy with
magnetic shear are presented in figure 6. The normalized
growth rates versus s are given for η‖ = 3 and η⊥ = 3 in
figures 6(a) and (b) respectively. The results show that neither
temperature anisotropy nor temperature gradient anisotropy
can change the stabilizing effect of magnetic shear on ITG
mode. Moreover, the stabilizing effect of s is stronger for neg-
ative Λi values. When T i⊥ > T i‖ (Λi > 0), the influence of
temperature anisotropy becomes weaker and weaker, show-
ing the blue and red lines or the blue and red symbols getting
closer and closer when s is large enough. Comparing the blue
dash-dotted lines (Λi = 1) in figures 6(a) and (b), the line with
η‖ = 3 and η⊥ = 2 in figure 6(a) is slightly faster than that

Figure 5. Normalized growth rate versus ion temperature gradient
in one direction, η⊥ (a) and η‖ (b), for different Λi and the
temperature gradient in another direction. The other parameters are
εn = 0.2, τ e = 1.0, q = 1.5, kθ = 0.45 and s = 0.1.

with η⊥ = 3 and η‖ = 2 in figure 6(b) to reach zero. This fur-
ther confirms the above conclusion that the driving force of
temperature gradient in the perpendicular direction is stronger
than that in the parallel direction when Λi > 0. On the other
hand, for the black solid lines (Λi = −0.5), the growth rate in
figure 6(a) also tends to zero faster than that in figure 6(b).
This indicates that stabilization effect of the magnetic shear is
enhanced in the high shear region when Λi = −0.5.

3.3. Synergy of ion temperature gradient threshold value

Here, the influence of ion temperature and temperature gradi-
ent anisotropy on the ion temperature gradient threshold for
excitation of ITG mode is discussed, and compared with the
results for the isotropic plasmas.

Firstly, the effect of ion temperature anisotropy on the
threshold is considered only, it means Λi 
= 0 and ηi⊥ = ηi‖.
Figure 7 shows the relation between the ion temperature gra-
dient threshold εTc = εn/ηic and density gradient parame-
ter εn, where the magnetic shear effect is also considered.
For isotropic plasma, it is generally believed that the thresh-
old of ion temperature gradient in tokamak plasmas is about
1.0, (ηic ∼ 1), and increases with the flattening of density
distribution. In this figure, two critical curves obtained from

5
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Figure 6. Normalized growth rate versus magnetic shear for
different Λi and temperature gradient in one direction. The other
parameters are εn = 0.2, τ e = 1.0, q = 1.5, kθ = 0.45, η‖ = 3 in
part (a) and η⊥ = 3 in part (b).

different mode in a tokamak are plotted [11], where the red
dotted line presents the threshold values under local kinetic
limit ηic = 1 and ηic = (1 + 1/τ )2εn when εn < 0.25 and
εn > 0.25, respectively. The red dash line is the results of
full kinetic limit ηic = 1 and ηic = 1 + 2.5(εn − 0.2) when
εn < 0.2 and εn > 0.2, respectively. The threshold curve
divides to the stable region (above) and the unstable region
(below). Regardless of the effect of magnetic shear, for a fixed
value s = 0.5, (blue line with solid circles, black solid line, red
dotted line and red dashed line), the numerical results show
clearly that the ion temperature anisotropy makes ITG mode
stable in most of εn region, corresponding to decrease the εTc

values. This is consistent with the previous conclusion, that
the positive or sufficiently large negative Λi has a stabiliza-
tion effect on ITG mode, owing to that ion Landau damping
plays an important role. When the density profile is very steep,
such as εn < 0.2, these four lines are almost the same, mean-
ing that density gradient has significant effect on ITG mode
in the smaller εn region. On the other hand, whether the per-
pendicular temperature or the parallel temperature is large, the
bigger magnetic shear is helpful to stabilize the ITG mode,
and the threshold corresponding to s = 0.5 is lower than the
threshold of s = 0.1, even the previous result has shown that
the magnetic shear s = 0.1 stabilizes ITG mode more effec-
tively. This shows that the ion temperature anisotropy does

Figure 7. Stable and unstable regions in εTc vs εn space for different
s and Λi values. The other parameters are
τ e = 1.0, q = 1.5, kθ = 0.45 and η‖ = η⊥.

Figure 8. Stable and unstable regions in εTc vs εn space. The other
parameters are τ e = 1.0, q = 1.5, kθ = 0.45 and Λi = 0.

not change the qualitatively effect of magnetic shear on the
threshold for excitation of ITG mode.

Secondly, the effect of ion temperature gradient anisotropy
on the εTc is plotted in figure 8, where the ion temperature
anisotropy is neglected. Since it is assumed that the temper-
ature gradient in one of two directions, perpendicular or par-
allel, is zero (η⊥ = 0 or η‖ = 0), it means that a driving effect
on ITG mode is reduced, a larger value in the other direction
(η⊥ or η‖) is required, the corresponding temperature thresh-
old is lower than the isotropic result. The same results can be
obtained that the large magnetic shear can effectively expand
the stable region of the ITG mode for most of the εn region. In
the small εn region (εn < 0.2 and εn < 0.1 when η‖ = 0 and
η⊥ = 0, respectively), the very steep density gradient increases
the drift instability, the thresholds corresponding to different
magnetic shear are close to each other. In addition, considering
the temperature gradient anisotropy, the driving force coming
from the perpendicular temperature gradient is easier to excite
ITG mode. As is shown that the threshold η⊥Tc at η‖ = 0 (black
line with circles) is higher than η‖Tc at η⊥ = 0 (black line with
triangles). This is consistent with the above results that the

6
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perpendicular temperature gradient has a stronger destabiliz-
ing effect.

4. Conclusion and discussion

The gyrokinetic integral eigenmode equation for studying
micro-drift instabilities is applied to analyze the ITG modes
in toroidal plasmas, where the ion temperature and its gradient
are anisotropic. The full kinetic mechanism of the ions, such
as finite Larmor radius, magnetic gradient and curvature drifts,
are taken into account.

The main conclusion includes: (1) ion temperature
anisotropy reduces the ITG instability when the perpendicu-
lar temperature is higher than the parallel temperature, cor-
responding to Λi > 0, since ion Landau damping plays an
important role to stabilize ITG mode. However, ITG mode can-
not be completely stabilized even for a large positive Λi. On
the other hand, when the parallel temperature is high enough,
corresponding to a large negative Λi, ITG mode can also
be stabilized since high parallel temperature corresponds to
high parallel velocity, which also enhances the Landau damp-
ing effect. (2) The driving force of ion temperature gradi-
ent in the perpendicular direction is stronger when Λi > 0,
while that of the parallel temperature gradient is relatively
more visible when Λi < 0. The analysis of the Eigen-equation
shows that Λi mainly acts on the parallel temperature gradi-
ent, corresponding to reducing and enhancing η‖ effect for
Λi > 0 and Λi < 0, respectively. (3) The synergy effect of
magnetic shear and anisotropy of ion temperature and its gra-
dient presents the overall stabilizing effect of magnetic shear
on ITG mode in a toroidal plasma, which is different from
the destabilizing effect of s � 0.4 in a slab plasma. Com-
pared with the case of non-magnetic shear, the effects of big
Λi and s do not give a destabilization/stabilizing effect on
the long-wavelength/short-wavelength modes when Λi > 0,
respectively. On the other hand, the inhibition of high magnetic
shear becomes stronger when Λi < 0. (4) By considering the
temperature gradient threshold for excitation of ITG mode, the
positive or sufficiently large negativeΛi also reduces the unsta-
ble area of ITG mode, and the unstable region of perpendicular
temperature gradient threshold is greater than that of the par-
allel temperature gradient threshold. This is still caused by ion
Landau damping. But s = 0.1 (the weak magnetic shear) is no
longer a special value for exciting ITG mode. It still obeys the
law that the greater the magnetic shear, the larger the stable
region is.

In this paper, the circular section and large-aspect-ratio
geometry are assumed. However, many real tokamaks are of
non-circular cross-section, the shaping of magnetic flux sur-
faces is important on turbulence in tokamak edge plasmas.

Some simulation code HELENA [19], GEM [20], etc can study
the elongation, triangularity and a divertor configuration. Their
work shows that transport is mainly reduced by local magnetic
shear and an enhancement of sheared f zonal lows induced by
elongation and X-point shaping [21]. The non-circular cross-
section will be our next step of work to study the ITG and
micro-drift instabilities in anisotropic plasma. It will be more
useful for real tokamak experiments.
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