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The state of in situ stress is a crucial parameter in subsurface engineering, especially for critical projects
like nuclear waste repository. As one of the two ISRM suggested methods, the overcoring (OC) method is
widely used to estimate the full stress tensors in rocks by independent regression analysis of the data
from each OC test. However, such customary independent analysis of individual OC tests, known as no
pooling, is liable to yield unreliable test-specific stress estimates due to various uncertainty sources
involved in the OC method. To address this problem, a practical and no-cost solution is considered by
incorporating into OC data analysis additional information implied within adjacent OC tests, which are
usually available in OC measurement campaigns. Hence, this paper presents a Bayesian partial pooling
(hierarchical) model for combined analysis of adjacent OC tests. We performed five case studies using OC
test data made at a nuclear waste repository research site of Sweden. The results demonstrate that partial
pooling of adjacent OC tests indeed allows borrowing of information across adjacent tests, and yields
improved stress tensor estimates with reduced uncertainties simultaneously for all individual tests than
they are independently analysed as no pooling, particularly for those unreliable no pooling stress esti-
mates. A further model comparison shows that the partial pooling model also gives better predictive
performance, and thus confirms that the information borrowed across adjacent OC tests is relevant and
effective.
© 2023 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).

1. Introduction

2003; Sjoberg et al, 2003). The main advantage of the OC
method is that the full stress tensor comprising six distinct com-

The state of in situ stress is a crucial parameter in many sub-
surface engineering endeavours. Such examples include rock en-
gineering design (Hudson and Harrison, 1997), geological storage of
carbon dioxide and radioactive waste (Zhang et al., 2017; Bao and
Burghardt, 2022), hydraulic stimulation design (Liu et al., 2018),
borehole stability analysis (Maleki et al., 2014) and seismic hazard
assessment (Stein, 1999). The overcoring (OC) method is widely
used in stress measurement campaigns in civil and mining engi-
neering (e.g. Fouial et al., 1998; Clément et al., 2009; Li et al., 2019),
and is, along with hydraulic fracturing, among the two ISRM sug-
gested methods for rock stress estimation (Haimson and Cornet,
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ponents can be determined from a single OC test with a dedicated
measuring device, e.g. the commonly used CSIRO HI and CSIR-type
strain cells.

An OC test mainly involves relieving a rock sample from its
surrounding rock masses and measuring the response strains along
different directions in the sample by the gauges of the strain cell.
The measured data from an OC test are usually analysed in a clas-
sical linear regression to obtain an estimate of the test-specific
stress tensor based on the constitutive assumption that the rock
is continuous, homogeneous, isotropic and linearly elastic (CHILE)
as

éi:Ci—rS-ﬁ-e,‘:Mei—l—ei (121.2, RS Tl) (1)

where ¢ is the strain measured by strain gauge i;

S = [0x Ty Txz Oy Tyz 0Z] T is the vector of the six unknown normal
and shear components of the stress tensor referred to an x-y-z
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Cartesian coordinate system; C = [C](,’) Cz(,') C3(,’) C4<,’) C5(,’> CG(i)} !
is the covariate vector for strain gauge i, and it is not directly
measurable but transformed from other OC test data (e.g. rock’s
elastic properties) as given in Appendix A; e; is the random error
between the measured strain ¢; and its predicted (i.e. mean) value
ke, by the theoretical linear stress-strain relationship. The number
of strain gauges n is usually 9, 12 or 16 depending on the type of
strain cell used. This study follows the convention of rock me-
chanics to process and present stress tensors under the ENU Car-
tesian coordinate system (i.e. x east, y north and z upwards).

While OC tests usually go through some quality control pro-
cedures (Hakala et al., 2003; Sjoberg et al., 2003), the above OC data
analysis for stress estimation inevitably suffers from various sour-
ces of uncertainty like any other stress determination method. For
instance, considering the delicacy of OC test operation and het-
erogeneity of natural rocks, measurement errors and model in-
adequacy (e.g. deviation from the constitutive relation) are deemed
non-negligible in practice. Additionally, the limited strain mea-
surements (n=9,12 or 16) from an OC test may significantly under-
represent the true strain field within the overcored rock sample,
thus leading to the statistical sampling error. Although some un-
certainty sources have been discussed (Amadei and Stephansson,
1997; Ask, 2003b; Hakala et al., 2003), uncertainty quantification
and reduction have largely been ignored in the routine OC data
analysis in the sense that test-specific stress estimates obtained
from the classical regression model are accepted without ques-
tioning their reliability.

Recognising this, recently the first author of the present study
extended the classical OC regression model to the Bayesian frame-
work, and demonstrated how uncertainties in the estimated stress
tensors and their principal stresses can be probabilistically quanti-
fied (Feng et al., 2021D). Following this work, a valuable yet unsolved
question is, can the reliability of stress states estimated using the OC
method be improved in terms of reduced uncertainty? A natural and
virtually no-cost solution to this problem is to incorporate existing
stress information into OC data analysis. In the context of OC stress
measurement campaign, adjacent OC tests are probably the most
practical information source, because they are generally available to
us given the common practice of conducting multiple closely spaced
(of the order of a metre or less) OC tests along a (sub)horizontal
borehole. Fig. 1 exemplifies such OC measurement practice where 18
OC tests were made very closely within 25 m in a horizontal bore-
hole from an underground gallery.

underground
gallery

horizontal
borehole

<5

Fig. 1. Multiple adjacent OC tests conducted along a horizontal borehole (modified
after Obara and Sugawara, 2003).

The idea behind this information source is based on the general
notion that stress states in close proximity are expected to bear
some degree of similarity instead of being completely unrelated,
and hence the data of adjacent OC tests may more or less provide
certain information to constrain each other’s underlying stress
states masked by uncertainties. Nevertheless, the customary
approach to OC data analysis is to process each OC test indepen-
dently to generate its respective test-specific stress estimate, thus
excluding the possibility of borrowing information across adjacent
OC tests. Such independent analysis of each individual data group
(e.g. data from each OC test) is statistically known as the no pooling
approach. As demonstrated already in Feng et al. (2021b) and later
on in this paper, this customary no pooling analysis of OC test data
is liable to yield unreliable stress estimates due to various sources
of uncertainty. In order for improved stress estimation, a rigorous
data pooling approach is needed to allow for borrowing of infor-
mation across adjacent OC tests.

There are two general approaches to pooling data from different
sources that may share similar characteristics (e.g. adjacent OC tests
herein), namely complete pooling and partial pooling. In complete
pooling, data groups from multiple sources are simply combined
into one single large dataset for a holistic analysis ignoring varia-
tion between groups. In other words, group-specific parameters are
assumed identical. Partial pooling is a generalisation of the two
extremes of no pooling and complete pooling, and is usually
implemented via Bayesian hierarchical modelling (BHM) that al-
lows for variation and hence similarity between groups, thereby
enabling borrowing of information across similar groups (Gelman
and Hill, 2006; Lunn et al., 2012).

In geotechnical engineering, the complete pooling approach has
been widely used to address the issue of limited site-specific data in
the sense that a generic database is compiled from geologically
similar sites to estimate some common geotechnical parameters. It
is increasingly recognised that such complete data pooling ignoring
between-site heterogeneity tends to give overconfident estimates
of geotechnical parameters that do not well characterise individual
sites; in recent years, partial pooling via BHM that explicitly models
data heterogeneity/similarity has received a growing interest when
combining information from different sources (e.g. Zhang et al.,
2016; Lu et al., 2018; Bozorgzadeh et al., 2019; Ching et al., 2021;
Xiao et al,, 2021). These studies have demonstrated the power of
the BHM framework to allow borrowing information across groups
(e.g. sites and projects) for improved geotechnical parameter esti-
mates in various geotechnical contexts.

Motivated by these successful applications, this paper presents a
novel application of the BHM framework to the important rock
engineering problem of in situ stress estimation with the OC
method. More specifically, this paper demonstrates how partial
pooling analysis of adjacent OC tests via BHM can be performed to
borrow information across tests to improve individual test-specific
stress estimates compared to the customary no pooling analysis in
terms of reduced uncertainty. In the context of rock stress esti-
mation, complete pooling of multiple adjacent OC tests is clearly
inappropriate, because it does not allow for variation between test-
specific stress states (i.e. assumes identical stress states) whereas
stresses are known to show spatial variability even at the small
scale of adjacent OC tests. Hence, complete pooling of adjacent OC
tests will not be explored in this study. Note that this study is not
intended to develop a new stress measurement method compared
with existing ones, but rather to enhance the customary interpre-
tation approach (i.e. no pooling regression) to OC tests—a widely
used and also ISRM suggested stress measurement method—for
improved OC stress estimation.
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2. Regression models for overcoring stress estimation
2.1. No pooling regression

Below we briefly review the customary no pooling regression
model for OC stress estimation formulated in the Bayesian frame-
work (Feng et al., 2021b). This no pooling modelling approach will
be benchmarked as the current practice to demonstrate the ad-
vantages of the proposed partial pooling model in stress
estimation.

Given a set of adjacent OC tests indexed by j (j =1, 2, ..., ), the
customary no pooling model is simply a separate regression anal-
ysis of each individual OC test j via Eq. (1) to generate its own test-
specific stress estimate, and can be written as

. — S ..
€jj —CUSJ+€U

e ~Norma1(o, g]?) 2)

where ¢; is the standard deviation of the normally distributed errors
ejj (i=1,2, ..., n) for each OC test j. Eq. (2) is called the likelihood
function, and its unknown parameters, test-specific stress vectors s;
and standard deviations g;, require specification of prior distribu-
tions in the Bayesian framework. Considering the realistic magni-
tude range of rock stress tensors and OC strains, the following
weakly informative priors are adopted for each test-specific sj and g;
(j=1,2,...,]) toreflect a lack of prior knowledge about their specific
values as

is this logical borrowing of information across similar data sources
that leads to the so-called partial pooling of data.

In partial pooling of adjacent OC tests, exchangeable parameters
are their test-specific stress states that are assumed to be similar
(neither restrictively independent nor identical). This underlying
assumption is reasonable considering the small scale of adjacent OC
tests with no observed significant geological discontinuities as
defined in this study. Indeed, when performing stress measure-
ment at a much larger scale (especially vertically) and/or encoun-
tering significant geological discontinuities, the partial pooling
approach should be properly examined taking into account the
gradient and discontinuity of the stress field.

While it is possible to have hierarchical (i.e. exchangeable)
standard deviations ¢; besides s;, here they are estimated inde-
pendently as in the no pooling model since they are not the focus of
this paper and also we do not have a particular justification for their
exchangeability. Therefore, the Bayesian hierarchical regression
model for adjacent OC tests j = 1, 2, ..., J is written as

. — cTs: "
€ij _CUSJ+eU

e;;~Normal (O, gjz) ()

where all s; are assigned a common multivariate normal (MVN)
prior with unknown hyperparameters to accommodate their sim-
ilarity (i.e. exchangeability) and each ¢; is assigned the same prior
with no pooling as

sj~MVN<[1O 00100 10] " MPa, diag(252, 7.52,7.52,252,7.52, 252) MPa? )

2
sj ~Half-normal <O, (75 x 10*6> )

where MVN denotes the multivariate normal distribution and
diag(-) is the diagonal matrix operator. Here, a multivariate prior
instead of six separate univariate priors is assigned to s; in order to
allow for the correlation between stress tensor components, and
half-normal distribution with positive support is chosen as the
prior choice for g;. Feng et al. (2021b) have shown that the priors of
Eq. (3) are suitable since they do not introduce influential infor-
mation into OC stress estimation as intended. A detailed interpre-
tation of these priors can be found in Feng et al. (2021b).

2.2. Partial pooling regression

In partial pooling (hierarchical modelling), parameters (e.g. s;) of
different data groups are loosely assumed to be similar rather than
necessarily independent or identical as implied respectively in the
no pooling and complete pooling approaches, and this is why the
former approach can be thought of as a generalisation of the latter
two. Such similar parameters, formally known as exchangeable
parameters, can be regarded as being drawn from a higher-level
population distribution, and hence in the Bayesian framework
can be induced by assigning a common prior distribution with
unknown hyperparameters (Lunn et al., 2012; Gelman et al., 2013).
As such, each individual group-specific parameter is estimated not
only directly from the data of its own group, but also indirectly from
the data of all other groups via the parameter population model. It

(3)

sj~MVN(us, Xs)
2
¢j ~Half-normal (0, (75 x 10’6) ) ()

In a fully Bayesian setting, the two unknown hyperparameters
of mean vector u,e R® and covariance matrix Xse R®*® themselves
require specification of prior distributions (known as hyperpriors
or hierarchical priors), and are respectively given the following
weakly informative hyperpriors as

uS~MVN([10 0010010]" MPa,

: 2 2 2 2 2 2 2 (6)
dlag<25 ,7.52,7.52,252 7,52 25 ) MPa )

and

X5 = diag(¢s)2sdiag(ss)
¢s ~Half-normal (07 52) MPa (7)
Qs~LK](n = 5)

Eq. (6) is mathematically equivalent to six separate univariate
normal hyperpriors, and such form allows for a single-line repre-
sentation of six probability density functions and also a ready
extension to incorporate possible correlation between the mean
stress components when such prior information is available. In
order to express prior information more flexibly and robustly for
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Fig. 2. Bayesian hierarchical model for partial pooling of adjacent OC tests. Nodes of open circles and filled circles represent unobservable variables and observable variables,
respectively, directed edges indicate conditional dependence, and solid plates indicate repetition for each i.

covariance matrix, it is recommended to avoid directly specifying a
single prior on it, but rather to specify separate priors on its
decomposed standard deviations and correlation matrix (Barnard
et al,, 2000; Gelman et al., 2013). Eq. (7) states that the covari-
ance matrix X is decomposed into a standard deviation vector ¢
and a correlation matrix £, and then a weakly informative prior
distribution is separately assigned to £ and each component of ¢.
In Eq. (7), LK] denotes the LK] distribution named after its authors of
Lewandowski et al. (2009), and it is a common prior choice for
correlation matrix and is essentially a multivariate generalisation of
the beta distribution controlled by a single shape parameter 7. A
detailed discussion on the prior specification for covariance matrix
can be found in statistics texts (Gelman et al., 2013; Kruschke, 2014;
McElreath, 2019) as well as in stress estimation works (Feng et al.,
2020, 2021a).

Fig. 2 illustrates the proposed Bayesian hierarchical model for
partial pooling of adjacent OC tests using the directed acyclic graph.
Itis seen that for each OC test j, its test-specific stress parameter s; is
learned from its own data and is also informed by the data from all
the other OC tests via the higher-level MVN population distribution
parameterised by us and X, thus enabling borrowing of informa-
tion across adjacent OC tests. Such partial pooling of adjacent OC
tests allows information to be borrowed by all individual test-
specific stress parameters simultaneously rather than by only one
certain stress parameter.

Note that in Bayesian inference, prior choices for model pa-
rameters are never unique in terms of distributional type and
hyperparameter values. When prior information is not available,
weakly informative priors that are based on some contextual
knowledge are now strongly advocated as the default prior choice,
because the traditional flat/vague priors placing roughly equal
probabilities over an unrealistically wide parameter range are
known to be not robust and may lead to biased posterior results in
case of limited data and/or complex models (Gelman et al., 2017;
Lemoine, 2019; Gelman and Yao, 2021). Throughout this study, the
adopted weakly informative priors provide only some realistic soft
ranges for unknown parameters, and are generally non-informative
to the posterior results. Such choices of weakly informative priors
in the context of stress analysis have been demonstrated to be
suitable (i.e. not significantly influence posteriors) in the authors’
previous works (Feng et al., 2021a, b).

2.3. Bayesian posterior computation

Given prior distributions for unknown parameters p(f) and the
likelihood function for observed data p(y |), the joint posterior
distribution of parameters can be expressed, according to Bayes’
rule, p(8 ly) « p(8)p(y |#). In BHM, the model parameters # them-
selves may have hierarchical prior distributions p(f |¢) conditioned
on unknown hyperparameters ¢; in this case, the joint posterior
distribution of all unknown parameters is expressed as p(f, ¢ |
¥) =< pe)p(d lo)p(y |0).

However, posterior distributions usually do not have a closed
analytical form, particularly for complex models like hierarchical
models. Hence, Bayesian computation often entails numerical
approximation methods such the commonly used Markov chain
Monte Carlo (MCMC) simulation method (Gelman et al., 2013). In
this study, all Bayesian models were fitted using the MCMC method
(more specifically, the Hamiltonian Monte Carlo algorithm) to
obtain parameters’ posterior distributions. Three Markov chains
with different initial values were simulated in parallel to have
confirmed their convergence. Each chain consists of 3000 draws
after the first 5000 iterations were discarded in the warm-up
period, and hence a total of 9000 posterior draws were used to
approximate the posterior distribution of each parameter.

3. Data description

To demonstrate the performance of the partial pooling model
for in situ stress estimation, this paper employs five case studies
with sets of adjacent OC tests made at the Aspd Hard Rock Labo-
ratory (HRL) of the Swedish Nuclear Fuel and Waste Management
Company. The Aspd HRL, operated since 1986, is a renowned geo-
scientific research facility for testing and developing safe techno-
logical solutions for a final geological repository of spent nuclear
fuel (see its overview in Fig. 3a), and it has conducted extensive
high-quality stress measurements that have been well documented
publicly.

The Aspé HRL consists of four main rock types: Sma land granite,
diorite, greenstone and apite; it also involves several narrow,
steeply dipping transmissive major fractures trending WNW-NNW
(Ask, 2004). The five OC test sets were all conducted in relatively
continuous rocks using the CSIRO HI strain cell with the location of
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Fig. 3. (a) Overview of the Aspd HRL (from Osterholz et al., 2022), and (b) Map of the Aspé HRL showing the locations (blue lines) of the (sub)horizontal OC stress measurement

boreholes used in this study.

their (sub)horizontal measurement boreholes that are not crossed
by major fractures, as shown in Fig. 3b. We emphasize that in this
study, adjacent OC tests are explicitly defined on the individual
borehole level which is not encountered by considerable disconti-
nuities, such that their underlying test-specific stress states can be
reasonably assumed to be statistically exchangeable.

An overview of the employed OC tests is provided in Table 1, and
all raw OC test data are available in Section 7 with the KA2510A OC
test data presented as an example in Table B1. Note that boreholes
KA1045A and KA1054A are made next to each other and hence
their seven OC tests are analysed as a single set denoted as KA10X,
and the average between-test spacing in each measurement
borehole is about only 0.4 m. A detailed description of all OC stress
measurements using the CSIRO HI at the Aspd HRL is provided by
Ask (2003a).

4. Results
4.1. Posterior estimation

Once the posterior distribution of a parameter is obtained, its
mean and spread (e.g. 95% credible interval (CI) and standard de-
viation) can be respectively taken as a point estimate and the
associated uncertainty of that parameter. Taking KA10X OC test 1 as
an example, Fig. 4a and b displays the trace plots of the three
simulated Markov chains of its test-specific stress component oy
from the no and partial pooling models, respectively, and the three
well-mixed and stable chains visually indicate their convergence to
the target posterior distribution; Fig. 4c shows the histograms of

Table 1
Overview of the adjacent OC test sets.

Borehole Depth (m) Trend (°) Plunge (°) Number of tests Strain cell

KA1045A% 143 206.4 -53 4 9-gauge CSIRO HI
KA1054A" 143.7 293.8 -5.1 3 9-gauge CSIRO HI
KA2510A 334.7 190.8 25 6 12-gauge CSIRO HI
KA1899A 256.6 317 1.5 5 12-gauge CSIRO HI
KA2870A 379.3 338.7 1.2 5 12-gauge CSIRO HI
KZ0059B 416.5 340.2 20 5 12-gauge CSIRO HI

2 0OC tests from the KA1045A and KA1054A boreholes are treated as a single
adjacent test set denoted as KA10X.

the two simulated posterior distributions, from which their pos-
terior means and 95% Cls are calculated. Compared to the no
pooling model, the much narrower 95% CI from the partial pooling
model suggests less uncertainty in its oy estimate.

For the five sets of adjacent OC tests analysed, the posterior
stress estimates for the KA10X and KA2510A test sets are discussed
in detail here, and the results for the other three test sets are given
in Appendix C. Figs. 5 and 6 show the posterior test-specific stress
tensor estimates for KA10X and KA2510A OC tests from the no and
partial pooling models, and the results are arranged by stress tensor
component.

First, Fig. 5 interestingly shows that KA10X OC tests 2—7 yield
similar no pooling estimates of 1y, of around —1.5 MPa with their
95% Cls substantially overlapping between —3 and 0 MPa, while OC
test 1 gives a significantly different 1y, estimate of —3.5 MPa
accompanied by a much wider 95% CI of (—8.3, 1.6) MPa. Such
obviously extreme no pooling estimates are also observed for the
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Fig. 5. Posterior estimates of test-specific stress tensors for KA10X OC tests from the no
and partial pooling models.

stress components oy, 0, and 1y, for OC test 1. Despite the natural
stress variability in space, this single extreme stress tensor estimate
for OC test 1 appears fairly suspect given the overall comparability
between the other six test-specific stress tensor estimates at
adjacent locations. Indeed, for OC test 1, the wide 95% Cls indicate
that the sources of uncertainty discussed in Section 1 have brought
in a large combined error which leads to its extreme stress tensor
estimate. For the KA2510A set shown in Fig. 6, the no pooling model
also generates a similarly extreme stress tensor estimate for OC test
2, whose 1yy, 1x; and g, components exhibit substantial differences

—— no pooling —e— partial pooling
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Fig. 6. Posterior estimates of test-specific stress tensors for KA2510A OC tests from the
no and partial pooling models.

and considerably larger uncertainties than the other five adjacent
OC tests.

The extreme stress estimates discussed above statistically
highlight the insufficiency of the customary no pooling analysis of
OC test data for in situ stress estimation, thus calling for an
approach that can incorporate additional information to reduce
uncertainty in test-specific stress estimates. The insufficiency of the
no pooling model arises from the fact that it estimates each indi-
vidual test-specific stress parameter based solely on the data from
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the associated single OC test that is subject to various uncertainty
sources. It is worth noting that identifying the unreliable test-
specific stress estimates would have been not possible without
uncertainty quantification, and this is exactly the main contribution
of Feng et al. (2021b) by extending the classical OC regression
model to the Bayesian framework.

For each KA10X and KA2510A OC test in Figs. 5 and 6, the partial
pooling model generally gives a different yet less uncertain esti-
mate than that of the no pooling model, which is manifested in the
narrower hierarchical 95% Cls for all the six stress tensor compo-
nents. In particular, the two extreme no pooling stress estimates for
KA10X OC test 1 and KA2510A OC test 2 become greatly more
reliable when partial pooling is applied. A similar but less notable
overall phenomenon is observed for the other three adjacent OC
test sets (i.e. KA1899A, KA2870A and KZ0059B) as presented in
Fig. C.1.

These results demonstrate that partial pooling of adjacent OC
tests via BHM indeed allows information to be borrowed across
these tests, and hence yields improved test-specific stress estimates
with reduced uncertainties simultaneously for all individual tests
than they are customarily analysed independently (i.e. no pooling).
The uncertainty reduction brought by partial pooling is particularly
notable for those highly unreliable stress estimates from no pool-
ing. Hence, when adjacent OC tests are available at a site, they
should be analysed preferably using partial pooling instead of no
pooling for improved stress estimation. Fortunately, as noted
earlier, adjacent OC tests as defined in this study are usually
available in OC stress measurement campaigns.

4.2. Overall uncertainty reduction

Since a full stress tensor is composed of six distinct components,
it is more intuitive to use a scalar value to compare the overall
uncertainty in the estimated six-dimensional stress vector s from
the two models considered. Here, we adopt the extensively used
scalar metric of multivariate dispersion called effective standard
deviation for this purpose, which is defined as the 2dth root of the
determinant of the covariance matrix of a d-dimensional random
variable. For the six-dimensional stress vector s, the effective
standard deviation of its posterior distribution is computed as
(Feng et al., 2021a):

5D e = icov®)® =y ficov({st} ) 1e ®)

where cov(-) and |-| denote the operator for covariance matrix and
matrix determinant, respectively; and s is the kth MCMC draw
(k=1,2, ..., K) from the posterior distribution of s.

Fig. 7 shows the effective standard deviation of each posterior
test-specific s for each of the five adjacent OC test sets from the two
models considered. Compared with no pooling, partial pooling of
adjacent OC tests leads to varying degrees of reduction in the
overall uncertainty in all individual estimated test-specific stress
tensors. For the five adjacent OC test sets (28 tests in total) being
analysed, most test-specific stress tensor estimates have seen an
overall uncertainty reduction by at least 15% from no pooling to
partial pooling. This is a clear indication that the degree of
improvement in OC stress estimation by partial pooling is
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Fig. 7. Overall uncertainty reduction for test-specific stress tensor estimates between no pooling and partial pooling modelling.
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Fig. 8. Residuals from the no and partial pooling models for the KA10X OC test set.

meaningful. For the KA10X and KA2510 OC test sets under focus,
their relative overall uncertainty reduction is particularly notable.
For example, the overall uncertainty in the estimated stress tensor
for KA10X test 1 and KA2510A test 2 are reduced remarkably by 70%
and 52%, respectively, which is expected from our earlier discussion
on Figs. 5 and 6.

The observed overall uncertainty reduction for all five case
studies further confirms the assertion made in Section 4.1 that
partial pooling of adjacent OC tests can reduce uncertainty in all
individual test-specific stress tensors estimated from the
customary no pooling analysis, particularly for those unreliable
ones.

5. Model comparison

Although not necessarily of interest in OC data analysis, a pre-
dictive model comparison is presented in this section to give some
additional insights into the two models and their benefits from a
different perspective. Fig. 8 illustrates the posterior means and 95%
CIs of the residual strains (i.e. difference between the measured and
fitted strains) from the no pooling and partial pooling models for
the KA10X OC test set (7 tests with each having 9 measured strains).
It should be noted that the residual plot is equivalent to the com-
mon plot of fitted versus measured values, and here residuals
themselves have posterior distributions as the fitted values are
calculated based on uncertain stress parameters.

In Fig. 8, residual estimates from no pooling are generally closer
to zero but accompanied by larger uncertainty. At first sight, these
smaller absolute residuals suggest that no pooling gives a better fit
to the OC test data than partial pooling, yet unfortunately this is a
sign of overfitting to the limited data within each OC test. To
demonstrate this, these two models are compared based on their
out-of-sample predictive accuracy (generalisation error equiva-
lently). A common measure of predictive accuracy for probabilistic
models is the expected log predictive density (elpd), which can be
estimated by two general types of approaches: cross-validation,
and information criteria (e.g. AIC, DIC and more recently WAIC)
that can be viewed as approximations to different versions of the
former (Gelman et al., 2014; Vehtari et al., 2017). Here, the widely
advocated method, leave-one-out cross-validation (LOO-CV), is
adopted to evaluate the elpd of the two Bayesian models for the five
adjacent OC test sets used in this study.

Given some data y1, ¥2, ..., ¥n, LOO-CV evaluates the elpd by
repeatedly holding out one data point y; (i = 1, 2, ..., n) and refitting
the model with parameters § to the remaining data y_; The
Bayesian LOO-CV estimate of the elpd is defined as

elpdigo = >-Inp0yily-) = Y In [ pwil0p(Bly )dé  (9)

i=1 i=1

where In p(y; |y_i) and p(y; |#) denote the log predictive density and
likelihood for the new (left-out) data point y;, respectively; and p(4 |
y_i) is the posterior distribution of § based on data y_;. In the
context of OC data analysis, it is the measured strains ¢; that are left
out for comparison to their predicted values. A detailed discussion
on Bayesian model comparison can be found in standard statistics
texts (e.g. Gelman et al., 2013, 2014; Vehtari et al., 2017) and in the
relevant geoscience works (Bozorgzadeh and Bathurst, 2019; Feng
et al,, 2022).

Table 2 summarises the elpd estimates and their difference for
the two Bayesian models evaluated on each of the five adjacent OC
test sets employed. Larger negative elpd indicates higher expected
predictive accuracy. For the KA10X test set, the LOO-CV elpd esti-
mates for the no pooling and partial pooling models are —341.6
and —328.3 with their standard errors being 7.5 and 7.2, respec-
tively, and the difference between the two elpd values (no
pooling — partial pooling) is —13.3 with a standard error of 3.8.
Since this elpd difference is large considering the log scale and is 3.5
standard errors away from zero, it can be asserted that partial
pooling has a remarkably better predictive performance than no
pooling for the KA10X test set. The same assertion can be made for
the KA2510 test set. For the remaining three test sets (KA1899A,
KA2870A and KZ0059B), the elpd differences are relatively small
and roughly 1 to 1.6 standard errors away from zero, indicating that

Table 2
Model comparison using leave-one-out cross-validation.
Model elpdsg -
KA10X KA2510A KA1899A KA2870A KZ0059B
No pooling 7341.6(7'5) 7423.4(10.1) 7282.5(4'0) 7355.3(5.9) 7301.3(5.9)
Partial pooling —328.3(7.2) —410.1(9.9) —278.7(4.3) —353.0(5.9) —298.7(65)
Difference** *13-3(3_8) 7‘13.3(3_7) 73.8(2_4) 72.3(2_2) 72.6(2_2)

* Standard error of estimated elpd.
** No pooling - Partial pooling.
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partial pooling outperforms no pooling only to a moderate extent.
Yet overall, all five OC test sets indicate that the partial pooling
model has a superior predictive performance than the customary
no pooling model.

The model comparison shows that although giving a better fit to
the OC test data, the no pooling model fails to predict unseen new
data (i.e. strains) as accurately as the partial pooling model, thus
signalling a tendency of overfitting. Essentially in partial pooling,
additional information borrowed across adjacent OC tests serves as
regularisation to sacrifice some goodness of fit for reduced uncer-
tainty in the estimated stress parameters (bias-variance trade-off in
machine learning parlance), whose combined effect leads to an
overall reduction in the prediction error and hence prevention of
overfitting to the noisy data. This suggests that the information
contained between adjacent OC tests is indeed relevant and effec-
tive in the five case studies, otherwise its introduced bias will
overtake the effect of reduced stress uncertainty to thus yield an
increased prediction error. The predictive comparison results
further confirm the superiority of partial pooling over no pooling
when analysing multiple adjacent OC tests.

It is worth noting that the goal of OC data analysis is the esti-
mation of test-specific stress state parameters; hence, the no
pooling and partial pooling models were actually evaluated based
on the reliability of estimated stress parameters (see Section 4)
rather than the predictive accuracy of OC strains. In predictive
modelling cases, it is recommended that the models be compared
and selected based on their predictive performance on the
response variables of interest.

6. Discussion

Uncertainty in the estimated stresses by the OC method can be
reduced by several aspects, such as improving the measuring de-
vice, following careful test procedures and performing quality
control procedures. In fact, these time-consuming and/or costly
measures have already been integrated into the development and
routine application of the OC method, and they mainly target to
minimise the impact of measurement errors on the estimated test-
specific stresses at the pre-analysis stage. Despite being effective,
these measures cannot eliminate measurement errors considering
the delicate OC test operation in complex underground conditions.
Moreover, other sources of uncertainty discussed in Section 1 still
persist. Consequently, the no pooling analysis of individual OC tests
without additional information incorporated is liable to yield un-
reliable test-specific stress estimates as confirmed in the five case
studies.

Given the information source of adjacent OC tests that is usually
available, the proposed Bayesian partial pooling approach offers a
practical solution at virtually no additional cost for improved OC
stress estimation at the analysis stage. In this regard, this approach
constitutes a highly valuable complement to the current practice of
the OC method for rock stress estimation. Nevertheless, partial
pooling for information borrowing via BHM is not without re-
strictions when applied to interpretation of OC tests to obtain test-
specific stress estimates.

We emphasize again the proposed approach should be applied
to adjacent OC tests as defined in this study, that is, those close to
each other at the individual borehole scale which is not crossed by
considerable discontinuities (also see Section 3). This application
restriction is to ensure that the adjacent OC tests analysed can be
reasonably assumed to sample from the same stress field contin-
uum within the small local rock volume involved, and thus the
exchangeability/similarity assumption underlying BHM can be
honoured to a great extent. In other words, the proposed partial
pooling approach is not intended for interpreting multiple OC tests

at the larger cross-borehole or even site scale, where discontinu-
ities and/or stress gradients may play a significant role and must be
taken into account properly.

Various probabilistic assumptions made about the proposed
partial pooling model like the normal distribution for regression
errors may be formally checked and compared with other alter-
natives for potential further model improvement. Nonetheless, this
is a different and boarder topic called (statistical) model checking
and selection, and is beyond the scope of this paper focusing on
comparing the proposed and customary approaches for interpre-
tation of OC tests under some same probabilistic settings.

In this study, we used weak prior distributions for unknown
parameters to demonstrate how the Bayesian partial pooling model
allows borrowing information across adjacent OC tests in stress
estimation. It is worth noting that other sources of stress infor-
mation may be available in practice (e.g. faulting regime, vertical
stress-depth relation and borehole breakouts), and then the pro-
posed model may be extended, with modification, to integrate such
additional information in forms of informative priors to further
reduce OC stress estimation uncertainty. For example, if there exists
a major fault that controls the general stress regime in a large rock
volume containing the set of adjacent OC tests being analysed, the
faulting stress regime in terms of stress orientations and relative
magnitudes may be encoded into informative priors for the pa-
rameters of the so-called stress population (i.e. us and Xg). Inte-
grating different sources of stress information to further enhance
OC stress estimation under the BHM framework warrants a future
investigation.

7. Conclusions

This paper discussed various sources of uncertainty associated
with OC stress estimation in rocks, and highlighted that the
customary no pooling approach that analyses each individual OC
test independently is liable to yield unreliable test-specific stress
tensor estimates under the impact of these uncertainty sources. To
address this important problem, we proposed that a practical and
no-cost solution may be to incorporate into OC data analysis
additional stress information implied in adjacent OC tests that are
usually available in OC measurement campaigns. Therefore, a
Bayesian partial pooling (hierarchical) model was presented for
combined analysis of adjacent OC tests.

Five case studies of adjacent OC tests from the Aspd HRL
demonstrated that partial pooling of adjacent OC tests indeed al-
lows borrowing of information across adjacent tests, and hence
yields improved test-specific stress estimates with reduced un-
certainties simultaneously for all individual involved tests than
they are customarily analysed independently with no pooling. The
case studies also revealed that the overall uncertainty reduction by
partial pooling is particularly notable for those unreliable no
pooling stress tensor estimates.

This paper also performed a formal predictive model compari-
son for the five adjacent OC test sets, and revealed that partial
pooling gives not only improved stress parameter estimates but
also better strain prediction. The model comparison further
confirmed that the information borrowed across adjacent OC tests
is relevant and effective, thereby preventing the tendency of
overfitting in no pooling modelling.

Data and code availability

The overcoring test data and the codes of the Bayesian no
pooling and partial pooling models used in this study are available
at https://doi.org/10.5281/zenodo.7772400.
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