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A B S T R A C T   

The characteristics of fracture networks are of great significance for unconventional geo-energy exploitation such 
as shale oil, shale gas and geo-thermal extraction. Natural fractures and induced fractures after reservoir stim
ulation control the mechanical properties and fluid flow of the reservoirs. The quantitative characterization and 
reconstruction of rough fractures are essential for studying the fluid flow and mechanical properties of the 
reservoirs with complicated fracture networks. Based on vector statistics, a vector statistical method (VSM) for 
quantitative characterization of rough fractures is proposed and tested using 10 standard joint profiles. 
Furthermore, the growth vector counting method (counting method) and growth vector probability method 
(probability method) for single rough fractures in two-dimensional (2D) and three-dimensional (3D) models are 
proposed. Afterward, a morphology comparison and quantitative evaluation of single rough fractures before and 
after reconstruction are conducted. When the counting and probability methods are used to reconstruct single 
rough fractures, the difference in the tortuosity and fractal dimensions of the original and reconstructed fractures 
are less than 5% and 2.5%, respectively. It implies the counting and probability methods proposed herein can 
reconstruct rough fractures with approximate statistical characteristics and quantitative characterization pa
rameters. Subsequently, the counting and probability methods for single rough fractures are further developed 
for 2D and 3D modeling of conventional and rough discrete fracture networks. The results indicate that the 
growth vector counting and probability methods proposed in this study have significant potential for rough 
discrete fracture network modeling. In addition, the merits and limitations of the proposed algorithms in 
modeling discrete fracture network models are discussed.   

1. Introduction 

Natural fractures commonly exist in deep reservoirs, greatly 
affecting the development and utilization of deep fossil energy, 
geothermal energy, and other resources. Natural fractures usually have a 
certain roughness, which significantly affects the physical and me
chanical properties and the development potential of deep reservoirs, 
such as the formation rocks properties, heat transfer capacity, reservoir 
flow, deformation, strength, completion, production, etc (Khang et al., 

2004; Li et al., 2018; Meng et al., 2021; Pirzada et al., 2021; Sangnim
nuan et al., 2018; Sun et al., 2020; Xia et al., 2021a, 2021b; Yang et al., 
2020; Zhang et al., 2021). Therefore, when studying the influence of 
natural rough fractures on the physical and mechanical properties of 
rocks, a preliminary accurate knowledge of the morphology of rough 
fractures is necessary (Marache et al., 2002; Pan et al., 2019). 

To accurately distinguish the different morphologies of rough frac
tures in two-dimensional (2D) and three-dimensional (3D) spaces, 
quantitative characterization parameters have been proposed. Owing to 
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the limitations of early monitoring technologies, the joint roughness 
coefficient (JRC) and path tortuosity have been proposed and widely 
used (Barton and Choubey, 1977; Tsang, 1984). However, the JRC and 
tortuosity focus on the overall morphology of rough fractures and 
disregard differences in the local characteristics of rough fractures. 
Subsequently, based on statistics and fractal theory (Ai et al., 2014; Li 
and Huang, 2015; Li and Zhang, 2015; Magsipoc et al., 2020; Marsch 
and Fernandez-Steeger, 2021; Wu et al., 2021a), some quantitative 
characterization parameters have been proposed considering the local 
characteristics of rough fractures. For example, the arithmetic average 
of the absolute height, root mean square (RMS), RMS of height, central 
line average, and fractal dimension measurement using different 
methods (e.g., compass walk method (CWM), cubic covering method 
(CCM), improved cubic covering method (ICCM), relative difference 
cubic covering method (RDCCM), and differential cubic covering 
method (DCCM)). Although these parameters allow single rough frac
tures to be conveniently quantified, the premise of quantitative evalu
ation of rough fractures is that the data of rough fractures have been 
obtained. In the current research (Jiang et al., 2019; Ju et al., 2016; Liu 
et al., 2016; Wu et al., 2020, 2021a, 2021b), the point cloud data of 3D 
or multiple rough fractures in rock specimens can be obtained using a 3D 
laser scanner or computed tomography (CT) scanning under static state, 
respectively. However, to obtain the morphological changes of fractures 
and fracture networks, simulation technology should be adopted. In this 
case, a rough fracture reconstruction based on both real and statistical 
data is indispensable. 

Based on statistics and fractal theory, some reconstruction methods 
have been proposed in recent decades, for example, the Weier
strass–Mandelbrot function (Ju et al., 2017, 2019), star product fractal 
surfaces (Xie et al., 1999), and iterative fractal surfaces (Xie et al., 2001; 
Zhao, 1996). Subsequently, considering the rough and aperture char
acteristics of a natural fracture, many fluid flow studies were developed 
(Brown, 1987; Brush and Thomson, 2003; Frampton et al., 2019; Huang 
et al., 2019; Ogilvie et al., 2006). Based on the fractal surface generation 
algorithm, the fluid flow behaviour of a single rough fracture was 
studied (Ju et al., 2019). By combining two rough fracture surfaces, 
variable fracture aperture can be considered, and the fluid flow in 
rough-walled fractures was also simulated (Brush and Thomson, 2003; 
Egert et al., 2021). Unfortunately, in the simulation studies of fractured 
reservoirs (Feng et al., 2021; Gao et al., 2019; Lei and Gao, 2018; Lei 
et al., 2017, 2021; Zhu et al., 2021), the single fracture of a previous 
stochastic discrete fracture network (DFN) in 2D is usually treated as a 
straight line segment (Fig. 1b and c) (Liu et al., 2021a) and that in 3D is 
mostly planar (e.g., ellipse or quadrilateral) (Chen et al., 2013; Huang 
et al., 2021; Li et al., 2021; Smeraglia et al., 2021; Xu and Dowd, 2010). 
However, there are significant roughness characteristics in natural rock 
fractures (Fig. 1a). To distinguish different DFNs by the fracture 

roughness characteristics, the previous stochastic DFN ignoring the 
roughness of natural fractures is called C-DFN in this paper. Meanwhile, 
these DFN models mainly consider the distribution characteristics of the 
quantitative parameters (e.g., length, strike, and area) of straight and 
planar fractures, whereas the distribution characteristics of the quanti
tative parameters (tortuosity and different fractal dimensions) of the 
rough DFN (R-DFN) are rarely considered. Therefore, a new quantitative 
characterization and stochastic reconstruction method for rough frac
tures must be proposed. To facilitate the modeling of similar R-DFNs, a 
new method needs to ensure that a single rough fracture before and after 
reconstruction has the same statistical characteristics. Meanwhile, as we 
all know, image processing technology (Jing et al., 2016, 2017; Karsa
nina et al., 2015; Song et al., 2021a, 2021b) has been widely used in rock 
pore and fracture reconstruction in recent years. Therefore, to 
strengthen the connection with the original experiment and field data, 
single rough fracture features in digital images should be considered. In 
addition, the new method needs to be conducive to subsequent mesh 
generation of the R-DFN model to satisfy the requirements of large 
deformation and nonlinear problem simulation research. 

Based on statistical theory and the connectivity characteristics of 
rough fractures in digital images, this paper presents a quantitative 
characterization and stochastic reconstruction method for single rough 
fractures. The principles and derivation processes are described in Sec
tion 2. Specifically, the existing characterization methods of rough 
fractures based on vector statistics are introduced in Section 2.1. The 
definition and derivation of growth vector are discussed in Section 2.2. 
The quantitative characterization method of rough fractures in pixel 
space based on vector statistics is further deduced, and the corre
sponding reconstruction algorithms are proposed in Section 2.3.To 
demonstrate its feasibility, 10 standard joint profiles in 2D are used as 
application tests, and the results are presented in Section 3.1. A sto
chastic reconstruction method of the rough fracture surface in 3D is also 
proposed and tested, as detailed in Section 3.2. The C-DFN and R-DFN in 
2D and 3D, based on the previously proposed stochastic reconstruction 
algorithms, are presented in Section 4. Additionally, the merits and 
limitations of the proposed quantitative characterization and stochastic 
reconstruction methods in DFN modeling are discussed in Section 5, and 
the conclusions are presented in Section 6. 

2. Methodologies 

2.1. Quantitative characterization 

The reconstruction of the R-DFN model in 2D and 3D requires a so
lution to the problem of quantitative characterization and stochastic 
reconstruction of a single rough fracture. In general, under the influence 
of in-situ stress, the aperture of natural fractures in reservoirs is small. 

Fig. 1. Fracture networks in real rocks and simulations ((a) surface fracture network of a coal specimen, (b) fracture network in fluid simulation (Zhang et al., 2019), 
(c) fracture network in in-situ stress simulation). 
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Therefore, the natural fracture aperture relative to the fracture length is 
almost negligible at the reservoir scale. Meanwhile, for large deforma
tion simulation research, to match with the current numerical simula
tion methods (e.g., boundary element method, block discrete element 
method, combined finite-discrete element method) (Ju et al., 2016; Li 
and Zhang, 2021; Liu et al., 2018; Wu et al., 2020, 2021b), the interface 
thickness (fracture aperture) is usually ignored. Under these conditions, 
the quantitative characterization of a single rough fracture based on 
vector statistics is shown in Fig. 2. As demonstrated in Fig. 2a, the rough 
fracture can be regarded as an irregular multi-segment line formed by 
the connection of many points (solid red circles). Therefore, when the 
connected points are established, a rough fracture is completely deter
mined. Based on statistics (Marache et al., 2002), a rough fracture can be 
represented by a set of ordered points, i.e., 

F ={fi}, fi =(xi, yi, zi), i= 1, 2, ⋅ ⋅ ⋅, n, (1) 

where F represents a rough fracture, and fi is the coordinate of the ith 
point. The starting and ending points are f1 = (x1, y1, z1) and fn = (xn,yn,

zn), respectively. For the entire rough fracture, a path with direction and 
length can be formed from starting point f1 to ending point fn (the 
longest blue arrow in Fig. 2a). The path shows the arbitrary transect 
direction of the entire rough fracture on the surface. To distinguish 

different parameters, the path is named macro growth vector, V→
Macro

F . 

Then, the macro growth vector, V→
Macro

F , and its length, LMacro
F , can be 

expressed as 

V→
Macro

F =(xn − x1, yn − y1, zn − z1), (2)  

LMacro
F =

⃒
⃒
⃒V→

Macro

F

⃒
⃒
⃒=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(xn − x1)
2
+ (yn − y1)

2
+ (zn − z1)

2
√

. (3) 

The rough fracture contains (n-1) line segments. Therefore, its real 
length, LReal

F , can be obtained as 

LReal
F =

∑n− 1

i=1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(xi+1 − xi)
2
+ (yi+1 − yi)

2
+ (zi+1 − zi)

2
√

, i= 1, 2, ⋅ ⋅ ⋅, n − 1.

(4) 

Then, the fracture tortuosity (Tsang, 1984) can be expressed as TF =

LReal
F

LMacro
F

. Meanwhile, other quantitative characterization parameters (e.g., 

RMS, RMS of height, JRC, and different fractal dimensions) of fracture 
roughness can also be obtained according to the point data of the whole 
fracture. 

Compared with Eqs. (2)–(4), a local growth vector, v→i, can be used to 
describe the ith segment of the rough fracture: 

v→i =(Δxi,Δyi,Δzi)= (xi+1 − xi, yi+1 − yi, zi+1 − zi). (5) 

Then, the real length can be calculated using the following formula 
by combining Eqs. (4) and (5): 

LReal
F =

∑n− 1

i=1

⃒
⃒
⃒
⃒ v→i

⃒
⃒
⃒
⃒, i= 1, 2, ⋅ ⋅ ⋅, n − 1. (6) 

It can be observed from Eq. (6) and Fig. 2b that a set of ordered 
growth vectors can be obtained: 

Vs =

{

v→i

}

, i= 1, 2, ⋅ ⋅ ⋅, n − 1, (7)  

where Vs represents the set of ordered growth vectors for the rough 
fracture. Therefore, the rough fracture F in Fig. 2a can also be deter
mined by the starting point f1, and the set of ordered growth vectors Vs: 

Fig. 2. Quantitative characterization sketch based on vector statistics ((a) a rough fracture in the Euclidean geometric plane, (b) vector composition diagram, and (c) 
different fractures obtained from the same vector set). 
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F =(f1,Vs)=

(

f1,

{

v→i

})

, i= 1, 2, ⋅ ⋅ ⋅, n − 1. (8) 

It is noteworthy that the rough fracture expressed in Eq. (8) is a 
completely determined rough fracture. For further illustration, the rough 
fracture in Fig. 2a is further decomposed into vector form (Fig. 2b). After 
adjusting the order of the first six growth vectors of the rough fracture 
(Fig. 2b), different rough fractures can be formed (Fig. 2c). In Fig. 2c, the 
rough fracture formed by the first six ordered growth vectors { v→i},i = 1,
2, ⋅⋅⋅,6, and the starting point f1, of the rough fracture in Fig. 2b can be 
expressed as (f1, { v→i}), i = 1, 2,3,4,5, 6. When the order of the growth 
vectors is adjusted from v→1→ v→2→ v→3→ v→4→ v→5→ v→6 to v→1→ v→4→ 
v→3→ v→2→ v→5→ v→6 or v→1→ v→6→ v→4→ v→3→ v→2→ v→5, two new rough 
fractures can be expressed as (f1, { v→i}), i = 1, 4,3, 2,5, 6 and (f1, { v→i}),

i = 1,6,4,3,2,5, respectively. The starting point f1 only affects the spatial 
position of the rough fracture but not the morphological characteristics 
(statistical proportion of different growth vectors, macro growth vector 
VMacro

F , and real length LReal
F ). This indicates that if the starting point is 

fixed (f1) or random (frandom), the statistical results of three different 
rough fractures in Fig. 2c are approximate; thus, they are regarded as 
similar rough fractures. These similar fractures Fs can then be expressed as 

FS =(frandom,Vs)=

(

frandom,

{

v→i

})

, i ∈ [1, 2, ⋅ ⋅ ⋅ , n − 1], (9)  

where i ∈ [1,2, ⋅ ⋅ ⋅, n − 1] means that the growth vectors are disordered. 
Eq. (9) shows that the set of growth vectors is the most important 

control parameter for similar rough fractures. As long as the set of 
growth vectors is determined, a class of similar rough fractures can be 
obtained. However, there may be many possible growth vectors, which 
render the quantitative characterization and stochastic reconstruction 
difficult. For example, Fig. 3a shows the result of without considering 

the original order of growth vectors in Fig. 2b and translating all growth 
vectors to the origin, before magnifying three times. Traditional char
acterization of rough fractures requires the identification and extraction 
of two pieces of information: length and angle. As shown in Fig. 3a, the 
fracture contains 29 different growth vectors with different directions 
and lengths. Due to the significant randomness of rough cracks, when 
extracting growth vectors, it is necessary to characterize massive 
random growth vectors using both length and angle information. When 
the number of growth vectors n→∞, the quantitative characterization 
and reconstruction of similar rough fractures using Eq. (9) may require a 
large amount of raw data and super storage capacity; this is inconve
nient for practical applications. Therefore, to obtain a more practical 
quantitative characterization and reconstruction method, the different 
growth vectors in Eq. (9) must be further defined. As shown in Fig. 3b, 
when we standardize the length and angle of growth vectors, the in
formation contained within the growth vectors that make up the fracture 
will be simplified to the selection of several standard growth vectors. 
This will greatly reduce the difficulty of rough crack identification and 
the amount of information storage, making it more suitable for digital 
image processing. Although, the constraints and simplification of 
growth vectors will affect the accuracy of fracture characterization, the 
impact of simplification can be disregarded, if small-scale standard 
growth vectors are used. 

2.2. Definition of growth vectors 

Owing to the development of monitoring technology, increased 
attention has been paid to obtaining rock pores and fissures from images 
(Wu et al., 2020, 2021b). This implies that considering the connectivity 
characteristics of holes and fissures in the image will be beneficial for the 
practical application of the new quantitative characterization and 
reconstruction method. Therefore, based on the connectivity feature of 
rough fractures in pixel space, the defining principle of growth vectors is 
explained. In pixel space, the connectivity of a pixel can be judged by its 
adjacent pixels (Bhabatosh, 1977; Gonzalez and Woods, 2002), 
including four neighborhoods, eight neighborhoods, and 26 neighbor
hoods. These finite different neighborhoods imply that the growth 
vectors could be defined when observing rough fractures in the pixel 
space. As shown in Fig. 4a and b, a rough fracture comprising multiple 
line segments can be regarded as being connected by a plurality of pixels 
in turn in the 2D pixel plane. Then, when a rough fracture is observed in 
the pixel space, there are only eight or 26 adjacent pixels in 2D or 3D 
pixel space, respectively (Fig. 4c). Therefore, the growth vectors can be 
further defined, and the quantitative characterization method of a rough 
fracture in pixel space can be further derived. Note that the pixel size 
may affect the fracture roughness. However, if the current image data 
acquisition accuracy is sufficient, and it meets the needs of numerical 
simulation (e.g., mesh generation, computing time), the influence of the 
pixel size may be reduced (Wu et al., 2021b). 

Fig. 4b and c shows that there are 8 possible growth vectors of an 
arbitrary point of the rough fracture in 2D pixel plane; thus, the set of 
growth vectors V in 2D can be expressed as 

V =

{

v→j

}

=

{
− 1 − 1

− 1 0
− 101− 1

0 1

1 − 1

1 1

0 1

}

, j= 1, 2, ⋅ ⋅ ⋅, 8,

(10)  

where v→j represents the ith possible growth vector, and d
→

j = (V1,j,V2,j,

V3,j), j = 1,2, ⋅⋅⋅,8. 
Fig. 4d shows different growth vectors in 3D pixel space, and a 

similar schematic can also be found in the lattice Boltzmann method (Ju 
et al., 2017). As shown in Fig. 4d, there are 26 possible growth vectors of 
the rough fracture in 3D pixel space; thus, the set of growth vectors V in 
3D can be expressed as  

Fig. 3. Uncertainty and optimization of growth vectors. The characterization of 
random growth vectors using lengths and angles can be simplified as the se
lection of the standard growth vectors. 
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where v→j represents the ith possible growth vector, and d
→

j = (V1,j,V2,j,

V3,j), j = 1,2, ⋅⋅⋅,26. 
Combined with Eq. (7), the set of ordered growth vectors in Fig. 4b 

can be expressed as 

Vs =

{

v→i

}

, v→i ∈V, i= 1, 2, ⋅ ⋅ ⋅, n − 1, (12)  

where v→i ∈ V denotes that any growth vector of the rough fracture, v→i, 
can be found in the set of different growth vectors, V, in Eq. (11). 
Combined with Eq. (9), similar fractures in pixel space, Fs, can be 
expressed as 

FS =

(

frandom,

{

v→i

})

, v→i ∈V, i ∈ [1, 2, ⋅ ⋅ ⋅ , n − 1]. (13) 

A comparison of Eqs. (9) and (13) shows that the requirement of Eq. 
(13) on raw data and the storage capacity have been substantially 
reduced after determining the set of different growth vectors. Taking a 

similar fracture in pixel space FS =

⎛

⎜
⎜
⎝frandom,

⎧
⎪⎪⎨

⎪⎪⎩

v→1, v→5, v→26,⋯, v→13, v→16, v→25⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
n− 1

⎫
⎪⎪⎬

⎪⎪⎭

⎞

⎟
⎟
⎠ as an example, a rough fracture can 

Fig. 4. Different growth vectors of a rough fracture in pixel space.  

V=

{

v→j

}

=

⎧
⎨

⎩

− 1 − 1 − 1

− 1 − 1 − 1

− 1 0 1

− 1− 1− 1000− 101 − 1− 1− 1111− 101 000− 1− 1− 1− 101

0 0 0

0 0 1

− 1 1 − 1

0 0 1

1 1 − 1

0 1 − 1

1 1 1

− 1 − 1 0

0 1 − 1

1 1 1

0 0 1

0 1 − 1

1

1

0

1

1

1

⎫
⎬

⎭
, (11)   
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be determined when only the set of different growth vectors V and the 

subscript set of ordered growth vectors 

⎧
⎨

⎩
1, 5,26,⋯,13,16,25
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟

n− 1

⎫
⎬

⎭
are 

known. In this case, the set of ordered growth vector subscripts of the 
rough fracture S can be expressed as 

S={si}, si ∈ [1, 2,⋯, 26], i= 1, 2, ⋅ ⋅ ⋅, n − 1. (14) 

Combined with Eqs. (12) and (14), the set of ordered growth vectors 
in pixel space Fvs can be expressed as 

Fvs =(V, S) = (V, {si}), si ∈ [1, 2,⋯, 26], i= 1, 2, ⋅ ⋅ ⋅, n − 1. (15) 

Then, a completely determined rough fracture in pixel space F can be 
expressed by combining Eqs. (8) and (15): 

F =(f1,V, S)= (f1,V, {si}), si ∈ [1, 2,⋯, 26], i= 1, 2, ⋅ ⋅ ⋅, n − 1, (16)  

where i = 1, 2, ⋅⋅⋅, n − 1 indicates that the growth vectors of set S are 
ordered. Based on Eq. (9), similar rough fractures in pixel space can be 
expressed as 

FS =(frandom,V, S) = (frandom,V, {si}), si ∈ [1, 2,⋯, 26], i ∈ [1, 2, ⋅ ⋅ ⋅ , n − 1],
(17)  

where i ∈ [1,2, ⋅ ⋅ ⋅, n − 1] implies that the growth vectors in set S = {si}

are disordered. 
Compared with Eq. (9), Eq. (17) has made significant progress. 

However, the set of growth vector subscripts in Eq. (17) still requires a 
large amount of raw data and a super storage capacity. As the different 
growth vectors in pixel space are known, many repeated subscripts can 
be counted. Therefore, the set of the cumulative number of different 
growth vector subscripts C and its corresponding probability set P can be 
obtained: 

C=
{

cj
}
, (18)  

P=
{

pj
}
, pj ∈ [0, 1], (19)  

where C is the cumulative number set of different growth vector sub
scripts and cj represents the cumulative number of jth growth vectors. In 
3D space, j = 1,2,⋅⋅⋅,26, pj =

cj
n− 1, and 

∑26
j=1pj = 1. In the 2D plane, j = 1,

2, ⋅⋅⋅,8, pj =
cj

n− 1, and 
∑8

j=1pj = 1. 
In this case, similar rough fractures Fs can be expressed as 

FS =(frandom,V,C) (20)  

FS =(frandom,V,P, n − 1). (21) 

Obviously, different growth vectors and their corresponding cumu
lative numbers in any similar rough fractures, represented by Eq. (20), 
are always consistent. However, similar rough fractures, represented by 
Eq. (21), are not only controlled by the growth vector set V and cumu
lative probability set P, but are also affected by the number of fracture 
segments n-1. Therefore, to characterize similar rough fractures 
described in Eq. (20), the macro vector of such fractures is required for 
the constraint. Then, Eq. (21) can be modified as FS = (frandom,V,P,n − 1,
VMacro

F ). However, the constraint of the macro vector in fracture recon
struction may lead to many iterative calculations; this is inconvenient 
for practical applications. In addition, when the number of fracture 
segments n-1, approaches infinity, the same growth vector and statistical 
probability of any fracture of similar rough fractures, represented by 
Eqs. (20) and (21), are consistent. Therefore, Eqs. (20) and (21) are 
recommended as quantitative characterization formulas for similar 
rough fractures; this quantitative characterization method is called the 
vector statistical method (VSM). 

2.3. Stochastic reconstruction algorithms based on vector statistical 

Similar rough fractures in pixel space can be quantified using Eqs. 
(20) and (21). According to Eq. (20), an algorithm for obtaining similar 
rough fractures by the growing vector set V and its corresponding cu
mulative number set C can be obtained; the algorithm is referred to as 
the growth vector counting method (counting method). According to Eq. 
(21), an algorithm for obtaining similar rough fractures by the growing 
vector set V and its corresponding probability set P can be obtained, and 

Fig. 5. Flow charts of the growth vector counting and probability methods.  
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the algorithm is called the growth vector probability method (proba
bility method). 

The flow charts of the counting and probability methods are shown 
in Fig. 5. Fig. 5a is the flow chart of the counting method, and Fig. 5b is 
the flow chart of the probability method. Their first step of the counting 
method is the same as that of the probability method, i.e., mesh the 
space where the rough fracture is located and set Nx, Ny, and Nz nodes in 
the x, y, and z directions, respectively. It should be noted that the 
meshed space must be larger than the space occupied by rough fractures. 
Then, the detailed steps of the counting method are as follows. 

① Input the set of growth vectors V, and its corresponding cumu
lative count C.  

② Assume t = 1 and generate a random starting point ft.  
③ A new growth vector v→t is determined based on set C. For 

example, assume that V = {(− 1, − 1, − 1), (1, − 1,0), (0, 1,1)} and 
C = {2,5,3}, thus the number of possible growth vectors (n - 1) in 
this example is 3. Then, a random integer between 1 and 3 is 
generated to determine the new growth vector v→t and the posi
tion of the next growth vector. Afterward, the cumulative count 
of the corresponding position in set C is subtracted by 1.  

④ Determine the next fracture point ft+1 according to ft and v→t .  
⑤ If the sum of all the cumulative numbers in the cumulative count 

set C is 0, the final fracture point data will be output; otherwise, 
continue to perform steps ③–⑤. 

Meanwhile, the detailed steps of the probability method are as 
follows. 

① Input the set of growth vectors V and its corresponding proba
bility set P. Meanwhile, input a given growth number n-1, which 
is the number of cycles required to generate a present complete 
fracture. (i.e., the number of line segments forming the rough 
fracture).  

② Assuming t = 1, a random starting point ft can be generated and 
the corresponding probability interval of each growth vector can 
be obtained through the set of growth vectors V and its corre
sponding probability set P. For example, assume that V =

{(− 1, − 1, − 1), (1, − 1,0), (0, 1,1)} and P = {0.2,0.5,0.3}. Then, 
the corresponding probability intervals of growth vectors ( − 1, −
1, − 1), (1, − 1,0), and (0,1, 1) are 0 − 0.2, 0.2 − 0.7, and 0.7 −

1.0, respectively.  
③ Generate a random number between 0 and 1, and a new growth 

vector, v→t , corresponding to the random number is determined 
according to the probability interval corresponding to each 
growth vector obtained previously. For example, if the random 
number is 0.1, then the new growth vector is v→t = ( − 1, − 1, −
1).  

④ Determine the next fracture point, ft+1, according to ft and v→t ; 
then t = t+1.  

⑤ If t < n-1, continue to perform steps ③–⑤. Otherwise, output the 
final fracture point data and exit the algorithm process. 

3. Application tests of a single fracture 

Barton and Choubey (1977) proposed the widely recognized 10 
standard joint profiles by extensive shear experiments, covering rough 
fractures from low roughness to high roughness. Afterward, this method 
received widespread attention due to its ease of use and was adopted by 
the ISRM Committee in 1981. That is, it may be more representative and 
reliable than some specific experimental and simulation results. There
fore, to verify the feasibility of the VSM, counting and probability 
methods, 10 standard joint profiles are used for the application test. The 
quantitative characterization results are shown in Section 3.1.1, and the 
comparison results of rough fractures before and after stochastic 

reconstruction are presented in Section 3.1.2. Subsequently, the recon
struction algorithms for a single conventional fracture and single rough 
fracture surface in 3D based on the counting and probability methods 
are further developed and tested, as will be described in Section 3.2. 

3.1. Single rough fracture in 2D 

Based on digital image processing technology, point data of 10 
standard joint profiles were extracted. The detailed steps (Fig. 6) are as 
follows: ① To obtain more standardized raw data, the original joint 
profile images from Barton’s research (Barton and Choubey, 1977) were 
first extracted. Meanwhile, to ensure measurement accuracy, joint pro
file images with a resolution exceeding 1600 × 300 were obtained based 
on digital image processing technology. ② To make the joint profile 
images clearer and facilitate subsequent processing, the joint profile 
images with sharp contrast were obtained through binarization. ③ After 
observation, there may be gaps in some joint profile images. To avoid 
the existence of gaps, the corrosion method in digital image processing is 
adopted to ensure the continuity of joint profiles. ④ It is generally 
believed that the joint profile morphology proposed by Barton (Barton 
and Choubey, 1977) does not consider the joint thickness, thus the 
refined joint profile image is obtained through morphological 

Fig. 6. Process for obtaining a set of ordered joint points.  

Fig. 7. Schematic diagram of the extracted 10 standard joint profile 
data points. 
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refinement processing. ⑤ The coordinates and connection data of the 
joint profile data points are obtained through connectivity judgment and 
nearest distance judgment (Wu et al., 2020, 2021b). The schematic di
agram of the 10 standard joint profile data points obtained is shown in 
Fig. 7. 

Based on the obtained coordinate point data of the 10 standard joint 
profiles, the quantitative characterization results obtained by the VSM 
are presented in Section 3.1.1. To evaluate the reliability of the counting 
and probability methods, the morphologies before and after recon
struction are compared. To quantitatively evaluate the reconstruction 
results, the fracture tortuosity (TF) (Li and Huang, 2015) is calculated. 
Meanwhile, the commonly used compass walk method (CWM) (Li and 
Huang, 2015) and different cubic covering methods (CCM, ICCM, 
RDCCM, and DCCM) (Ai et al., 2014; Wu et al., 2021a) that we tested are 
used to quantify the differences in the rough fractures before and after 
reconstruction. Note that only when the fracture morphology meets the 
power-law distribution characteristics (Wu et al., 2021a) (i.e., the cor
relation coefficient of the fitting curve is close to 1), the fractal dimen
sion can be used to characterize the rough fracture quantitatively. When 
different fractal dimensions of rough fractures before and after recon
struction are measured, the correlation coefficient is higher than 0.98, so 
different fractal dimension results can be used. The results are presented 
in Section 3.1.2. 

3.1.1. Characterization results 
According to Eq. (20), the growth vectors of the 10 standard joint 

profiles and their corresponding counting results are listed in Table 1. 
According to Eq. (21), the growth vectors of the 10 standard joint pro
files and their corresponding probabilities are listed in Table 2. 

Table 1 and Table 2 demonstrate that the 10 standard joint profiles 
with different JRCs are successfully quantified by eight different growth 
vectors in 2D, indicating that the VSM can be used for quantitatively 
characterizing rough fractures. For example, in Table 1, the standard 
joint profile with JRC = 0 − 2 can be expressed as FS ,JRC=0− 2 = (frandom,

V,C), V = {(0,1),(1,1),(1,0),(1, − 1),(0, − 1)}, and C = {1,101,1388,
101,1}. In Table 2, the standard joint profile with JRC = 0 − 2 can be 
expressed as FS ,JRC=0− 2 = (frandom,V,P,n − 1), V = {(0,1),(1,1),(1,0),(1,
− 1), (0, − 1)}, P = {0.0006,0.0634,0.8719,0.0634,0.0006}, and n −
1 = 1592. Although there are many quantitative parameters, compared 
with the range value of the JRC, the VSM has a stronger certainty. In 
addition, Table 1 and Table 2 show that the 10 standard joint profiles are 
mainly composed of six different growth vectors (v1 = (0,1), v2 = (1,
1), v3 = (1, 0), v4 = (1, − 1), v5 = (0, − 1), and v6 = ( − 1, − 1)). 
Moreover, growth vector v3 has the largest proportion, followed by 
growth vectors v2 and v4, and growth vectors v1, v5, and v6 have the 
smallest proportion. The results indicate that these standard joint pro
files have an obvious tendency, which can also be observed from the 10 
standard joint profile images. 

Based on the quantitative characterization results obtained by the 
VSM, the relationship between the peak shear strength and the JRC 
proposed by Barton (Barton and Choubey, 1977) can be briefly 
analyzed. The relationship between the peak shear strength and the JRC 

is 

τ=σn tan
(

JRC log
JCS
σn

+φr

)

, (22)  

where τ is the peak shear strength of rock joints, σn is the normal stress, 
JRC is the joint roughness coefficient corresponding to the 10 standard 
joint profiles, JCS is the strength of the joint wall, and φr is the basic 
friction angle. 

Eq. (22) shows that when the normal stress σn, strength of the joint 
wall JCS, and the basic friction angle φr are determined, the peak shear 
strength τ is positively correlated with the JRC. Fig. 8 shows the prob
ability results of different growth vectors corresponding to the different 
JRCs values obtained from Table 2. First, the proportion of growth 
vectors v1 = (0, 1), v5 = (0, − 1), and v6 = (− 1, − 1) are lower than 
0.016, 0.006, and 0.002, respectively, whereas the proportion of growth 
vectors v2 = (1,1), v3 = (1,0), and v4 = (1, − 1) are larger. The results 
suggest that growth vectors v1, v5, and v6 have little influence on the 
joint profile morphology and strength, whereas growth vectors v2, v3, 
and v4 have a significant influence on the joint profile morphology and 
strength. Then, with the increase of JRC, the probability of growth 
vectors v1, v5, and v6 exhibits no tendency. However, the probability of 
growth vectors v2 and v4 significantly increases, whereas the probability 
of growth vector v3 significantly decreases. As shown in Fig. 4, with the 
increase in the JRC, the variation in the probability of v2 and v4 indicates 
increased fluctuation and reduced smoothness. During the shear test, 
with other conditions unchanged and an increase in the JRC, the friction 
coefficient of the joint profiles increases correspondingly, and the anti- 
sliding ability of the joint profiles increases. Therefore, the peak shear 
strength of rock joints is positively correlated with the JRC. These 
analysis results indicate that the relationship between the peak shear 
strength and the JRC can be better understood based on the VSM. 
Therefore, these results demonstrate the feasibility of the VSM. In 
addition, if the JRC can be further decomposed into the growth vector 
set and its probability set or the rough fracture in the shear experiment 
can be directly quantified, a more precise relationship between the peak 
shear strength of rock joints and these statistical characteristics may be 
obtained. 

3.1.2. Comparison results 
When the JRC is 0–2, 8–10, and 16–18, the morphology comparison 

results of the rough fractures before and after stochastic reconstruction 
are shown in Fig. 9. Of course, due to the random method, there will be 
some differences in the final fracture shape obtained by the same initial 
parameters (i.e., different random seeds and initial positions). When 
JRC = 0–2, the rough fractures reconstructed by the counting and 
probability methods are nearly identical to the original rough fracture. 
With the increase of JRC, the entire morphology of the reconstructed 
and original rough fractures significantly fluctuates. The original joint 
contour with JRC = 8–10 has a clear and relatively gentle peak, but this 
phenomenon was not observed in the reconstructed joint contour. There 
are multiple sharp peaks in the original joint contour with JRC = 16–18, 
while the peak features in the reconstructed joint contour are not 

Table 1 
Growth vectors and their corresponding counts of 10 standard joint profiles.  

Growth vector (2D) Cumulative count 

0–2 2–4 4–6 6–8 8–10 10–12 12–14 14–16 16–18 18–20 

(0,1) 1 0 1 4 0 0 2 0 0 27 
(1,1) 101 141 131 163 185 149 190 221 247 278 
(1,0) 1388 1404 1416 1313 1303 1329 1226 1215 1189 1122 
(1,-1) 101 121 118 169 145 164 175 218 207 298 
(0,-1) 1 0 1 4 0 0 0 2 9 4 
(-1,-1) 0 0 0 1 0 0 0 1 3 0 
(-1,0) 0 0 0 0 0 0 0 0 0 0 
(-1,1) 0 0 0 0 0 0 0 0 0 0  
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Table 2 
Growth vectors and their corresponding probabilities of 10 standard joint profiles.  

Growth vector (2D) Probability 

0–2 2–4 4–6 6–8 8–10 10–12 12–14 14–16 16–18 18–20 

(0,1) 0.0006 0 0.0006 0.0024 0 0 0.0013 0 0 0.0156 
(1,1) 0.0634 0.0846 0.0789 0.0985 0.1133 0.0907 0.1193 0.1333 0.1492 0.1608 
(1,0) 0.8719 0.8427 0.8494 0.7938 0.7979 0.8094 0.7697 0.7331 0.7183 0.6489 
(1,-1) 0.0634 0.0726 0.0708 0.1022 0.0888 0.0999 0.1099 0.1318 0.1252 0.1724 
(0,-1) 0.0006 0 0.0006 0.0024 0 0 0 0.0012 0.0054 0.0023 
(-1,-1) 0 0 0 0.0006 0 0 0 0.0006 0.0018 0 
(-1,0) 0 0 0 0 0 0 0 0 0 0 
(-1,1) 0 0 0 0 0 0 0 0 0 0  

Fig. 8. Probability of different growth vectors for different JRCs.  

Fig. 9. Morphological comparison results of rough fractures before and after stochastic reconstruction (the original joint profiles with JRC of 0 − 2, 8 − 10, and 16 −

18 are from the literature (Barton and Choubey, 1977)). 
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significant. The results suggest that the rough fracture reconstructed by 
the counting and probability methods may exhibit a more obvious ten
dency; thus, it is more conducive to the stochastic reconstruction of 
tendentious rough fractures. Meanwhile, we speculate that this is due to 
the fact that the quantitative characterization and reconstruction 
methods proposed in this article only consider the overall directional 
probability characteristics of fractures and lack a description of the local 
features of fractures. In addition, the end parts of the rough fractures 
before and after the stochastic reconstruction are enlarged and shown in 
the red boxes. The morphological results (rough blue fractures) indicate 
that with the increase in the JRC, the fluctuation frequency and ampli
tude of the rough fractures increase significantly before and after sto
chastic reconstruction. This result is consistent with the definition of 
JRC, as the roughness and degree of joint contour increase with the 
increase of JRC. Therefore, these morphological comparison results 
indicate that the counting and probability methods proposed in this 
study are feasible for reconstructing similar rough fractures. 

The vector statistical characteristics of rough fractures reconstructed 
by using the counting and probability methods are similar to those of the 
original fracture; hence, the statistical characteristics are not analyzed. 
To quantitatively evaluate whether the rough fractures reconstructed by 
the counting and probability methods have similar characteristics to the 
original rough fractures, 100 rough fractures are reconstructed. Among 
them, 50 rough fractures are reconstructed using the counting method, 
corresponding to the 10 standard joint profiles. Another 50 rough 
fractures are reconstructed using the probability method, corresponding 
to the 10 standard joint profiles. Then, the tortuosity and different 
fractal dimensions measured by the compass walk method (CWM), cubic 
covering method (CCM), improved cubic covering method (ICCM), 
differential cubic covering method (DCCM), and relative difference 
cubic covering method (RDCCM) were obtained. Subsequently, to 
evaluate the difference between different quantitative parameters 
before and after reconstruction, a difference coefficient kco is calculated. 

kco =
|TDFC − TDFO|

TDFO
, (23)  

where kco is the difference coefficient, TDFC and TDFO represent the 
tortuosity or different fractal dimensions of the original and recon
structed rough fractures, respectively. 

The variations in the difference coefficients of the tortuosity and 
different fractal dimensions before and after reconstruction are shown in 
Fig. 10. As can be seen, the difference coefficient of different fractal 
dimensions measured by the compass walk method (CWM, red), cubic 
covering method (CCM, green), and relative difference cubic covering 

method (RDCCM, orange) is less than 0.01 (1%) for the rough fractures 
reconstructed by using both the counting and probability methods. The 
difference coefficient of the tortuosity (black) and fractal dimensions 
measured by the improved cubic covering method (ICCM, blue) and 
differential cubic covering method (DCCM, purple) is less than 0.05 
(5%). The results indicate that the tortuosity and different fractal di
mensions before and after reconstruction are similar, demonstrating that 
the counting and probability methods can be used to reconstruct rough 
fractures with similar tortuosity and fractal dimensions. Thus, the 
counting and probability methods can restore not only the morpholog
ical characteristics of the original rough fractures to a certain extent, but 
also accurately restore similar tortuosity and fractal dimensions of the 
original rough fractures. 

The difference coefficients of the tortuosity corresponding to 
different JRCs in Fig. 10a are almost identical; thus, they are almost 
concentrated in a single black data point. The result confirms that the 
vector statistical characteristics of rough fractures obtained by the same 
growth vector set are basically the same (as shown in Fig. 2). Therefore, 
the tortuosity of rough fractures obtained by the counting method re
mains the same, while there are some differences affected by probability 
when probability method is adopted (Fig. 10b). Meanwhile, even if the 
difference coefficients of the tortuosity corresponding to different JRCs 
are relatively close (the error is less than 0.05 (5%)), their results are 
also different (i.e., multiple black data points in Fig. 10b). To restore the 
reconstructed fractures with similar quantitative parameters to the 
original ones, they can be screened by iterative judgment. In addition, 
the span of the difference coefficients of fractal dimensions DICCM and 
DDCCM in Fig. 10a is obviously smaller than that in Fig. 10b. These results 
indicate that the rough fracture reconstructed by the counting method 
has more stable tortuosity and fractal dimensions than those recon
structed by the probability method; this may be because the growth 
vector set and its corresponding probability set of the reconstructed 
rough fracture using the probability method is easily affected by the 
growth step. Therefore, when the growth step is small, the use of the 
counting method is more conducive to restoring reconstructed fractures 
close to the initial fracture quantitative parameters than the probability 
method. 

3.2. Single conventional and rough fractures in 3D 

Based on the VSM, counting and probability methods, different 
rough fracture lines in 3D can be obtained. Suppose that two 3D rough 
fracture lines (FS,1, FS,2) have been obtained. Suppose FS,1 has n points, 
moving FS,1 along FS,2, a rough fracture surface (RFS) can be obtained 

Fig. 10. Variations in difference coefficients of tortuosity and different fractal dimensions before and after reconstruction (The data of different colors represent the 
different results of different quantization parameters). 
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(Xie et al., 1999). Therefore, based on Eqs. (20) and (21), a rough 
fracture surface in 3D can be expressed as 

RFS=

⎛

⎝FS,1,FS,2, ⋅⋅⋅,FS,2
⏟̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅⏟

n

⎞

⎠, (24)  

where RFS represents a rough fracture surface constructed by two linear 
rough fractures (FS,1 and FS,2) in 3D space. It is worth noting that when a 
rough fracture FS,1 is translated according to another rough fracture FS,2 

to obtain a rough fracture surface, four endpoints around the rough 
fracture surface can also be obtained. In this case, the four endpoints can 
form a finite plane, i.e., a conventional fracture surface. Therefore, not 
only a rough fracture surface but also a conventional fracture surface can 
be obtained using Eq. (24). 

Generally, when testing and verifying the proposed method, there is 
no essential difference between real and stochastic fracture surfaces. 
Therefore, this section directly demonstrates the verification analysis 
through stochastic reconstruction results. As the main focus is on the 
reconstruction of a single conventional fracture or single rough fracture 
in 3D, random initial parameters are set and five conventional fractures 
and five rough fractures in 3D are constructed based on Eq. (24). As the 
shapes of the five reconstructed conventional fractures are identical, 
implying that the relative positions of the four endpoints of the con
ventional fractures and five rough fractures remain unchanged, the re
sults of a conventional fracture are shown in Fig. 11a. The reconstructed 
five rough fractures with different shapes are shown in Fig. 11b–f. The 
fracture surface shown in Fig. 11a is planar and smooth, whereas the 
fracture surfaces presented in Fig. 11b–f are nonplanar and rough. 
Subsequently, different cubic covering methods are used (Ai et al., 2014; 
Wu et al., 2021a) to measure the 3D fracture surfaces, and the results are 
shown in Fig. 12. Fig. 12 shows that some fractal dimension measure
ment results of rough fracture surfaces are lower than 2, and that of the 
conventional fracture surface is not equal to 2. Similar phenomena can 
be observed in previous studies (Ai et al., 2014; Wu et al., 2021a), which 
may be caused by the rounding of the value of the measurement pro
gram. Therefore, the phenomenon is acceptable. The fractal dimensions 
of the five rough fractures are basically larger than those of the con
ventional fractures, while some of the DICCM and DRDCCM of the five rough 
fractures are lower than those of the conventional fractures. The result 

denotes that the improved cubic covering method (ICCM) and relative 
difference cubic covering method (RDCCM) need to be further 
improved. In addition, it can be seen from Fig. 12 that although there are 
differences in different fractal dimensions (DCCM, DICCM, DDCCM, and 
DRDCCM) of five rough fractures, the difference coefficient is approxi
mately 0.05 (within 2.5%). Meanwhile, the different fractal dimension 
results of the five reconstructed conventional fractures are consistent. 
Therefore, we believe that the morphological results depicted in Fig. 11 
and the quantitative measurement results shown in Fig. 12 indicate that 
the reconstruction method of single conventional fracture and single 
rough fracture based on Eq. (24) is reliable. That is, it is acceptable to use 
the quantitative measurement results of a rough fracture to approxi
mately reconstruct a series of similar rough fractures obtained by using 
Eq. (24) and the same initial parameters. 

4. Application of rough fracture reconstruction in DFN models 

Based on the reconstruction algorithms of single conventional and 
rough fractures in 2D and 3D, the reconstruction algorithms for the C- 
DFN and R-DFN in 2D and 3D are developed, and they are displayed in 
this section. 

Fig. 11. Morphological results of conventional and rough fracture surfaces in 3D.  

Fig. 12. Fractal dimension measurement results of conventional and rough 
fractures in 3D. 
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4.1. DFN models in 2D 

Based on the counting and probability methods, an R-DFN in 2D can 
be obtained by controlling the starting point, growth vector set, corre
sponding count set, and probability set of single rough fractures. In this 
case, the R-DFN in 2D can be expressed as a set of multiple rough 
fractures in 2D: 

RDFN =
{

FS,1,FS,2,⋯,FS,i,⋯,FS,m
}
, (25)  

where RDFN represents an R-DFN composed of m rough fractures in 2D. 
FS,i is the ith rough fracture, composed of discrete points (see Eq. (1)). 
When only the starting and ending points of the rough fracture are 
determined, a straight fracture can be obtained. When all the fractures in 
the network are determined, a C − DFN in 2D composed of straight 
fractures can also be obtained by using Eq. (25). 

As the focus is on the modeling example of a C-DFN or R-DFN in 2D, 
the distribution characteristics of the fracture network are not consid
ered. Therefore, the initial parameters of all fractures are set by random 
assignment. Subsequently, a C-DFN and a R-DFN, established using Eq. 
(25) are shown in Fig. 13. Note that when the start and end points of any 
rough fractures in the R-DFN in Fig. 13b are taken, the corresponding C- 
DFN in Fig. 13a can be obtained. The reconstruction results indicate that 
the C-DFN and R-DFN models can be obtained by using Eq. (25). 
Meanwhile，it is worth mentioning that Fig. 13 shows that the gener
ated fractures have approximately three main directions: around 0◦, 45◦, 
and 135◦, which is caused by the selected random initial parameters. In 
addition, as the 2D DFN used in the current simulations is mostly 
composed of multiple linear smooth fractures (Gao et al., 2019; Lei et al., 
2017; Wang et al., 2021), the C-DFN and R-DFN models established in 
this study will help compare the differences between these two different 
models. In addition, as described in Sections 2.2 and 3.1, rough fractures 
with similar statistical characteristics, tortuosity, and fractal dimensions 
can be reconstructed using the counting and probability methods pro
posed in this paper. Therefore, the quantitative characterization and 
stochastic reconstruction methods proposed in this paper are also 
conducive to the introduction of tortuosity and different fractal di
mensions into the R-DFN model in 2D. 

4.2. DFN models in 3D 

Based on Eq. (24), single conventional and rough fracture surfaces 
with close fractal dimensions can be obtained. In this case, the R-DFN in 
3D can be expressed as a set of multiple rough fracture surfaces: 

RDFN ={RFS1,RFS2,⋯,RFSi,⋯,RFSm}, (26)  

where RDFN represents a rough DFN in 3D composed of m rough frac
ture surfaces, and RFSi is the ith rough fracture surface. In this case, if 
only four endpoints of any rough fracture surface in the DFN are taken, a 
conventional fracture surface can be formed. Subsequently, a C-DFN in 
3D can also be obtained based on Eq. (26). 

After random initial parameters are set, a C-DFN and a R-DFN in 3D 
are obtained based on Eq. (26), and the results are shown in Fig. 14. 
Obviously, based on the quantitative characterization and reconstruc
tion methods proposed in this paper, both the C-DFN and R-DFN can be 
obtained. As confirmed in Section 3, the different fractal dimensions of a 
single rough fracture surface obtained by using the same initial pa
rameters are similar. Therefore, it is helpful to introduce different fractal 
dimensions into the distribution model of DFNs. These results indicate 
that the quantitative characterization and reconstruction method pro
posed in this paper has considerable potential for simulation considering 
the influence of natural rough fracture networks. 

5. Merits and limitations 

DFN models have been widely used in many simulation studies such 
as heat and mass transfer, in situ stress evolution, and fracture propa
gation considering natural fracture networks (Choi et al., 2017; Deng 
and Zhu, 2020; Gao et al., 2019; Ju et al., 2019; Lei and Gao, 2018; Lei 
et al., 2017, 2021; Liu et al., 2021b). In the study of fracture simulation 
of large deformation rock mass, such as hydraulic fracturing of fractured 
rock mass, the grid quality determines the feasibility of numerical 
simulation and the reliability of simulation results. Therefore, this sec
tion first compares and discusses the grid quality differences of different 
grid models obtained by using C-DFN and R-DFN. Then, corresponding 
reconstruction algorithms that can be further developed are described in 
Section 5.2, to meet the needs of considering more random rough frac
tures and rough-walled fractures (Brush and Thomson, 2003; Jing et al., 
2017) with the aperture in the simulation of small deformation and 

Fig. 13. Reconstruction results of the C-DFN and R-DFN in 2D.  
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Fig. 14. Reconstruction results of the C − DFN and R − DFN in 3D.  

Fig. 15. Mesh generation results of the C-DFN and R-DFN models in 2D.  
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multi-field coupling simulation of heat and mass transfer. 

5.1. Merits of mesh generation 

The single fracture in C-DFN models in 2D and 3D is usually a 
straight line comprising two points or a planar fracture, and the pro
posed quantitative characterization and reconstruction method can 
realize the reconstruction of R-DFN models in 2D and 3D. Meanwhile, 
the quantitative evaluation results presented in Section 3 indicate that 
the tortuosity and different fractal dimensions of rough fractures ob
tained by using the same initial parameters do not change significantly; 
this will help introduce the distribution model of rough feature quan
tization parameters into the R-DFN models to establish a more realistic 
DFN model. For general small deformation problems, refining the mesh 
can effectively solve the convergence problem of the simulation model. 
Therefore, the quantitative characterization and reconstruction method 
of rough fractures in Section 2-4 is sufficient to support scholars in 
considering the influence of the R-DFN. However, large deformation and 
nonlinear problems, such as fracture propagation, require a higher mesh 
quality. Therefore, the second difficulty in applying the R-DFN models 
for large deformation simulations is that the established R-DFN models 
need to be more conducive to mesh generation to overcome the 
convergence problem in the simulation process. 

In general, the closer the shape and size of the mesh elements in the 
simulation model, the better the mesh quality (Knupp, 2003). If trian
gular elements are used in the simulation model, closer side lengths of 
these elements result in a better mesh quality. In addition, the equilat
eral triangle element may have the best mesh quality. To evaluate the 
mesh quality of the R-DFN model reconstructed in this study, a C-DFN 
model and a R-DFN model are adopted. Then, unstructured grids of the 
C-DFN and R-DFN models are formed by applying the same grid gen
eration algorithm, and the mesh quality of different models is compared 
based on a previous study (Knupp, 2003); the results are shown in 
Fig. 15. The range of the cloud image in Fig. 15 represents the shape 
metric of the element. A shape metric of 1 means that the triangular 
element is equilateral, and a shape metric of 0 means that the triangular 
element is degenerate. As shown in Fig. 15, the shape metric of the 
C-DFN model is 0–1, whereas that of the R-DFN model is 0.66–1.00. 
Furthermore, the local enlarged images of the C-DFN and R-DFN models 
show that the side lengths of the grid elements in the C-DFN model are 
quite different, whereas the side lengths of the grid elements in the 
R-DFN model are relatively similar. This may be due to the large span of 
the two-point connection in the C-DFN model, resulting in the formation 
of multiple narrow surface areas; thus, the shape and size of the trian
gular elements are quite different. In the R-DFN model, any rough 
fracture is composed of several different growth vectors; thus, it is easier 
to obtain triangular meshes with similar shapes and sizes in the subse
quent mesh generation. These results indicate that the proposed 
reconstruction methods are beneficial to the mesh generation of the 
simulation model, providing a better solution for the simulation of large 
deformations and nonlinear problems (Ju et al., 2016; Li et al., 2020, 
2021; Li and Zhang, 2021; Liu et al., 2018, 2021a; Wang, 2019; Wu 
et al., 2020). It is worth mentioning that the method proposed in this 
paper was written into a script program using Python language, and the 
different DFN models generated during the testing of this paper can be 
completed within a few minutes. This result indicates that using the 
method proposed in this paper to construct a DFN model is basically 
feasible in terms of time. Of course, as the proposed reconstruction 
method has a substantial amount of geometric information during pro
cessing, it has higher requirements for the processing ability of computer 
and pre-processing software. 

5.2. Limitations and solutions 

Under the influence of in-situ stress, the aperture of natural fractures 
in reservoirs is usually small. Therefore, in the study of in-situ stress and 

fracture propagation, 0-thick rough fracture surfaces are acceptable and 
widely used to match the subsequent numerical simulation methods 
(Wang, 2019). When small deformation heat and mass transfer simu
lation is carried out, the influence of fracture geometry on simulation 
convergence is significantly reduced. Therefore, some studies have 
begun to pay attention to the influence of complex random rough frac
tures (Brown, 1987; Jing et al., 2016, 2020). Unfortunately, the fracture 
surface obtained by Eq. (24) presents a certain step shape, which will not 
be convenient to simulate a rough fracture surface closer to the real one. 
When the translated rough fracture line is replaced by a series of similar 
rough fracture lines with statistically consistent direction vectors, a 
more random rough fracture surface can be obtained. Assuming that the 
total number of points of the first known rough fracture line is n, the 
number of fracture lines to be translated is n. At this time, Eq. (24) can be 
further improved to 

RFS=

⎛

⎝FS,1,FS,2, ⋅⋅⋅,FS,n+1
⏟̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅⏟

n

⎞

⎠, (27)  

where FS,2, ⋅⋅⋅, FS,n+1 represents a series of similar rough fracture lines 
consistent with the statistics characteristics of FS,2. 

To determine the feasibility of Eq. (27), a set of random initial pa
rameters with greater statistical fluctuation is used to obtain rough 
fracture surfaces. Then, different rough fracture surfaces obtained by Eq. 
(24) and Eq. (27) are shown in Fig. 16a–h. Fig. 16a–h shows that the 
rough surfaces obtained by Eq. (24) no longer show a significant step 
shape (Fig. 16a, b, e, and f). Meanwhile, the elevation fluctuation of 
rough fractures obtained by Eq. (27) is more significant. Therefore, 
using Eq. (27) will be benefit to obtain a more random rough fracture 
surface to meet the needs of current simulation research on heat and 
mass transfer with small deformation. In addition, please note that the 
rough-walled fractures has attracted a lot of attention in a large number 
of fluid flow studies (Brown, 1987; Brush and Thomson, 2003; Jing 
et al., 2017; Ogilvie et al., 2006; Tsang, 1984; Xu and Dowd, 2010), so its 
random generation algorithm is also the focus of the quantitative 
characterization and reconstruction of rough-walled fractures. 
Rough-walled fractures used in previous researches (Brown, 1987; Brush 
and Thomson, 2003; Frampton et al., 2019; Huang et al., 2019) are 
usually obtained by the combination of two the same or different rough 
fracture surfaces. Therefore, a rough-walled fracture can be obtained by 
the combination of two rough fracture surfaces, as shown in Fig. 16i and 
j. 

6. Conclusions 

In this paper, a quantitative characterization method (VSM) and 
reconstruction methods (counting and probability methods) of single 
rough fractures based on vector statistics are proposed. Subsequently, 
standard joint profiles are used for the application test. The results show 
that the VSM can be used to evaluate rough fractures. With the increase 
in JRC, the proportion of growth vector v3 = (1,0) decreases, whereas 
the proportion of growth vectors v2 = (1,1) and v4 = (1,-1) increases. The 
results indicate that with the increase in JRC, the fracture smoothness 
decreases and the roughness increases. In the shear test with other 
conditions unchanged, the increase in the fracture surface roughness is 
beneficial to the improvement of the friction coefficient and anti-sliding 
ability. Therefore, the quantitative characterization results obtained 
using the VSM can explain the relationship between the JRC and peak 
shear strength, based on the statistical characteristics of rough fractures. 
Then, the tortuosity and different fractal dimensions measured by the 
compass walk method (CWM), cubic covering method (CCM), improved 
cubic covering method (ICCM), differential cubic covering method 
(DCCM), and relative difference cubic covering method (RDCCM) are 
used to evaluate the difference in the rough fractures in 2D before and 
after reconstruction. The results demonstrate that the difference 
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coefficient of the tortuosity and different fractal dimensions before and 
after reconstruction is less than 0.05 (5%). Thus, the proposed counting 
and probability methods can obtain linear rough fractures with close 
quantitative characterization parameters. Meanwhile, the reconstruc
tion method of single conventional and rough fractures in 3D is devel
oped and tested, and the results show that the difference coefficient of 
the different fractal dimensions before and after reconstruction is less 
than 0.05 (within 2.5%). The results indicate that the reconstruction 
method of single conventional and rough fractures can obtain rough 
fracture surfaces with similar quantitative characterization parameters. 
That is, these reconstruction methods can help approximately restore 
the actual rough fracture morphology. Subsequently, the C-DFN and R- 
DFN models are established based on previous reconstruction methods, 
demonstrating the significant potential of the proposed quantitative 
characterization and reconstruction methods in DFN modeling. In 
addition, the mesh quality of different DFN models is discussed. The 
results demonstrate that the R-DFN model established in this study could 
help form a better quality grid. Therefore, the proposed quantitative 
characterization and reconstruction methods may be of great signifi
cance for establishing a fractured reservoir model that considers the 
rough characteristics of natural fractures. 
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