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Abstract: Predicting earthquakes through reasonable methods can significantly reduce the damage
caused by secondary disasters such as tsunamis. Recently, machine learning (ML) approaches have
been employed to predict laboratory earthquakes using stick-slip dynamics data obtained from
sheared granular fault experiments. Here, we adopt the combined finite-discrete element method
(FDEM) to simulate a two-dimensional sheared granular fault system, from which abundant fault
dynamics data (i.e., displacement and velocity) during stick-slip cycles are collected at 2203 “sensor”
points densely placed along and inside the gouge. We use the simulated data to train LightGBM (Light
Gradient Boosting Machine) models and predict the gouge-plate friction coefficient (an indicator
of stick-slips and the friction state of the fault). To optimize the data, we build the importance
ranking of input features and select those with top feature importance for prediction. We then use
the optimized data and their statistics for training and finally reach a LightGBM model with an
acceptable prediction accuracy (R2 = 0.94). The SHAP (SHapley Additive exPlanations) values of
input features are also calculated to quantify their contributions to the prediction. We show that when
sufficient fault dynamics data are available, LightGBM, together with the SHAP value approach,
is capable of accurately predicting the friction state of laboratory faults and can also help pinpoint
the most critical input features for laboratory earthquake prediction. This work may shed light on
natural earthquake prediction and open new possibilities to explore useful earthquake precursors
using artificial intelligence.

Keywords: disasters prediction; stick-slip; earthquake; machine learning; combined finite-discrete
element method (FDEM)

1. Introduction

Reliable prediction of earthquakes, a long-standing goal of earthquake research, is a
prerequisite for reducing losses from earthquake disasters. Although many efforts have
been made in the past, earthquake prediction is still in its infancy due to the inherent
complexity of the underlying earthquake physics. In recent years, artificial intelligence,
especially machine learning (ML), has become the mainstream tool for data analysis in
various fields. The ML approaches can explore inner patterns from large data volumes and
fit nonlinear mapping relationships between different variables in high dimensions. While
various earthquake sources and propagation models have been developed, the intricate
physics from earthquake nucleation to dynamic rupture poses tremendous challenges for
accurate and reliable modelling and forecasting. In particular, integrating various hetero-
geneous fault data and extracting complex hidden patterns beyond simplified physical
laws demands advanced data-driven approaches. Data collected from natural earthquakes
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typically includes seismic catalogues, earthquake waveforms, surface deformation, elec-
tromagnetic fields, temperature fields, gravity fields, and observations of changes in un-
derground fluids and geochemical compositions [1]. Therefore, the ML algorithms, with a
solid ability to capture underlying unknown nonlinear patterns, may thus be appropriate
for earthquake prediction exploration.

There is evidence that machine learning has been used for the prediction of disasters
such as earthquakes and tsunamis. Asencio-Cortés et al. [2] studied the sensitivity of
19 earthquake catalogue features to machine learning prediction models and explored the
impact of different types of earthquake catalogues on the prediction target. Asim et al. [3]
expanded the earthquake catalogue to include 60 entries by calculating statistical features
within a fixed time window. The study used 60 earthquake characteristics and the mRMR
criterion to extract relevant features. A prediction system was developed using SVR and
HNN, with EPSO optimizing weights. This system, applied to Hindu Kush, Chile, and
Southern California, showed improved prediction performance compared to previous
studies. Allen and Melgar [4] constructed various decoders for seismic data using deep
neural networks to predict earthquake magnitudes in the next seven days. Brykov et al. [5]
employed different machine learning classifiers to predict events in specific areas with
magnitudes equal to or greater than a certain threshold, showcasing strong predictive
capabilities. Furthermore, Corbi et al. [6] effectively trained a machine learning prediction
model capable of detecting sliding events by analysing recorded fault deformation data. In
addition to the features based on earthquake catalogues mentioned above, machine learning
models for natural earthquake prediction are also utilized to explain the earthquake process,
such as earthquake magnitude changes analysis [7,8] and investigation of the underlying
processes driving earthquake occurrence [9,10]. In this type of work, input data from
catalogues of past events are crucial since they may directly affect how well ML models
will perform. However, due to the limited number of periodic cycles of historical events
recorded from many natural faults, reliable prediction of natural earthquakes using ML is
still challenging.

As an alternative, it has been recognized that laboratory rock shearing experiments
exhibiting stick-slips can generate patterns similar to the intermittent dynamics of natural
earthquakes [11]. However, in contrast to natural earthquakes, laboratory earthquakes have
the advantages of controllable seismogenic conditions, easy monitoring of frictional dynam-
ics, highly repeatable earthquake processes, and abundant periodic cycles, and thus have
been extensively employed to explore the physics of earthquakes [12–16]. The frictional
dynamics data obtained in the stick-slip experiments can enable ML applications in labo-
ratory earthquake prediction. For example, Rouet-Leduc et al. [17] revealed a correlation
between the acoustic emission signal released in a laboratory shear test and the macro-
scopic shear stress based on a random forest model; Bolton et al. [18] classified the acoustic
emission signals in laboratory shear experiments by an unsupervised K-cluster method
and predict the occurrence time, duration, and magnitude of laboratory earthquakes using
the data trained with classified features. Wang et al. [19] used a deep-learning transformer
model to predict fault characteristics like displacement and friction using acoustic emission
signals. The ML-based laboratory earthquake prediction may pave the way for developing
appropriate approaches and procedures for natural earthquake prediction. However, due
to the limitations of monitoring equipment, some laboratory experiments can only collect
limited types of signals with restricted quantities. Particularly, the local friction dynamic
information (displacement, velocity) inside the fault is difficult to acquire directly during
the experiment because of the restriction of sensor location in the physical model. As a
result, the datasets utilized in the existing ML work are usually small, i.e., using no more
than a few sensor points, and thus the generalization ability of the ML models in these
applications may be limited.

Complementary to physical laboratory experiments, numerical simulations of laboratory-
scale sheared granular fault experiments have also been conducted to explore earthquake
physics in recent years [20–27]. Setting up dense monitoring points both on the shear-
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ing plate and inside the gouge in the numerical model allows for collecting sufficient
macroscopic and microscopic friction dynamics data during stick-slip cycles with spatial
resolutions that are practically impossible in physical experiments. Numerical simulation
can enable a more detailed investigation of laboratory earthquake predictions with various
seismic features and also the interaction between these features leading to recurring slip
events. For example, Ren et al. [28] used the rigid particle-based discrete element method
(DEM) to simulate a sheared stick-slip experiment containing a granular gouge and, thereby,
collected friction dynamics data of different particles to train a series of XGBoost [29] mod-
els for predicting the system’s macroscopic friction. They found that the fault dynamics
responses at different locations have entirely different contributions to the overall stick-slip
behaviour and incorporating more statistical features of the friction dynamics signals in
training can improve prediction accuracy. However, only the velocity signals from one or
two particles in the DEM simulation are utilized in each training. Ma et al. [30] also trained
an XGBoost model using data and their statistics from a DEM-simulated sheared granular
fault gouge to investigate the relations between the microslips and macroscopic friction
and suggested that the trained ML model can well distinguish the recharge and drop stages
of the entire system.

Very recently, the state-of-the-art combined finite-discrete element method (FDEM)
has been applied as an improvement of the traditional rigid particle-based DEM for sheared
granular fault simulations [31–33]. The FDEM inherits the merits of both the finite element
method (FEM) and the DEM and has proven to be a powerful tool for simulating granular
materials (see the introduction of the FDEM in Text S1 of Supplementary Material) [34]. In
an FDEM realization of the sheared granular fault system, the DEM module is responsible
for processing the particle–particle and particle–plate interactions, and the FEM module
allows for simulating the deformation of both particles and shearing plates. A combination
of the FEM and the DEM is superior to traditional DEM simulations where only rigid parti-
cles and plates are allowed (see Figure S1 in Supplementary Material for the comparison
between the FDEM and the DEM). Gao et al. [31] mentioned that compared to the DEM,
the FDEM could easily realize the explicit representation of granular fault systems and thus
better capture more detailed and realistic fault microscopic dynamics data in both particles
and shearing plates during stick-slip cycles. In our previous work, we have thoroughly
validated the appropriateness of the FDEM for simulating laboratory earthquakes [31].
Based on our FDEM simulated sheared granular fault data, Wang et al. [35] trained a
convolutional encoder-decoder using the kinematic energy of the numerical model and
successfully transferred the trained ML model to predict the frictions of physical labora-
tory experiments. The transfer learning practice demonstrates great potential for training
laboratory earthquake ML prediction models using FDEM simulations.

In this work, continuing with the FDEM simulated 2D granular fault system under
stick-slip shearing, we further probe into the fault dynamics data collected at 2203 “sensor”
points (i.e., displacements and velocities in both x and y directions at each sensor point)
densely distributed both on the shearing plates and inside the gouge. We train and test
LightGBM [36] models using the time-series data obtained at these sensor points as input
features and the gouge-plate normalized shear stress (shear stress divided by the applied
constant normal stress) as the label (i.e., prediction target). The main purpose of this study
is to investigate whether the regular fault dynamics data (displacements and velocities)
contain effective information on the instantaneous shear stress of the fault and to explore
how the input features could be optimized to better predict the fault friction state when a
large number of fault dynamics data are available.

This paper is organized as follows. Section 2 briefly introduces the FDEM model,
the LightGBM, and SHAP value approaches. In Section 3, we first determine the optimal
number of input features that are representative of the fault system through a series of ML
training and testing using different numbers of sensor data. We then filter the 8812 input
features (2203 × 4) to alleviate the possibility of feature correlation based on the obtained
optimal number and the importance ranking of input features. We train the LightGBM
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model using the optimized (filtered) dataset and test its prediction performance. Following
this, we also expand the optimized feature data by calculating their statistics to form a new
input feature dataset and check the performance of the newly trained LightGBM model.
In Section 4, the SHAP value analysis is carried out as a preliminary trial to discuss the
contribution of input features to the prediction results. The conclusions are given at the end.

2. Methods
2.1. FDEM Simulation of Stick-Slips

In this study, a laboratory-scale sheared granular fault system is simulated using the
FDEM to produce fault dynamics data and macroscopic shear stress fluctuations associated
with stick-slip processes. The FDEM model, which was first referenced by Gao et al. [31],
consists of two shearing plates and one granular fault gouge and is realized according to
the laboratory photoelastic experiment conducted by Geller et al. [37] (Figure 1). The gouge,
confined between two identical deformable plates, consists of 2817 bidisperse circular
particles with diameters of either 1.2 or 1.6 mm. The material and numerical simulation
parameters are shown in Table S1 of the Supplementary Material. All particles are randomly
generated and placed between the two plates. Each plate is 570 mm × 250 mm in width and
height, and to induce friction, numerous half-circular “teeth” are created on the plates along
the gouge-plate boundary. We apply the shear loading and normal pressure through two
stiff bars attached to the top end of the upper plate and the bottom end of the lower plate,
respectively. The bottom stiff bar is fixed in the shear direction (x direction), so it can only
move in the vertical direction (y direction) under a constant normal pressure P = 28 kPa. The
granular gouge is sheared by pushing the top stiff bar horizontally towards the right-hand
side (x direction) at a constant velocity V = 5.0 × 10−4 m/s with its vertical movement
fixed. A detailed illustration of the model geometry and parameter selection is presented
in Text S2 of the Supplementary Material. As in our previous work [31], we calibrated the
FDEM simulation by comparing its equivalent seismic moments with those obtained from
the laboratory experiments by Geller et al. [37]. Figure S2 (Supplementary Material) shows
that the FDEM simulation generates slip events with magnitudes adequately following the
Gutenberg-Richter distribution [38]. These prove that the FDEM model can simulate the
stick-slip behaviour in sheared granular gouges with sufficient accuracy.

To track the frictional dynamics signals during shearing and to avoid the edge effect,
the 2203 “sensor” points are placed at the centres of the particles and the half-circular teeth
that cover the middle segment of the granular gouge layer with a span of ~340 mm in the
x direction (Figure 1a). We thus collect a total of 8812 (2203 × 4, i.e., Vx, Vy, Dx, and Dy
at each sensor point) items of time-series data. The sensors on the two plates (i.e., on the
half-circular teeth) are numbered first starting from 0 to 285, followed by the ones on the
particles. The sensors on the bottom plate are numbered with even numbers (i.e., 0, 2, . . .,
284), and the sensors on the top plate are numbered with odd numbers (i.e., 1, 3, . . ., 285).
The sensor numbers on the particles are then followed in a sequence from left to right and
bottom to top. We set a time step of 10−7 s and run the model for almost 3.0 × 108 time
steps with a total running time of ~30 s. The model reaches a steady state after the first 3 s,
and the data collected after 5 s are used here for ML analysis. The normalized gouge-plate
shear stress and the x and y velocity (Vx, Vy) and displacement (Dx, Dy) at the 2203 sensor
points are recorded every 1 ms. Figure 1b presents the time series of the normalized shear
stress (NSS) and the exemplar displacement and velocity data recorded at a selected sensor
at No. 382, manifesting the repetitive generation of slip events and recharging processes.
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Figure 1. (a) Schematic of the FDEM model and the sensor locations. (b) Exemplar fault dynamics data
such as (from top to bottom) the normalized gouge-plate shear stress, and the x and y displacements
and velocities collected at sensor No. 382. “NSS” is short for normalized shear stress.

2.2. LightGBM (Light Gradient Boosting Machine) Approach

The dense microscopic fault dynamics data collected at different sensor locations in
the granular fault system may reflect the macroscopic stick-slip behaviour differently. Some
of these data likely significantly contribute to the ML model’s prediction performance,
while others are merely redundant information due to potential feature correlations [39,40].
Therefore, filtering important input features and alleviating feature correlation are crucial
in training ML prediction models, especially when abundant data are available.

This study employs the LightGBM (Light Gradient Boosting Machine) approach [36]
to select important input features and train prediction models. LightGBM is built based on
the Gradient Boosting Decision Tree (GBDT) and is one of the most versatile ML algorithms.
Unlike other GBDT algorithms adopting a pre-sorting method for node splitting, LightGBM
uses the histogram of input features to substantially reduce its memory consumption and
computational cost [36]. Before training the model, we first convert the input feature data
at each time instant into a histogram in the form of {(xi, yi), i = 1, 2, . . . .n}, where xi is the
bin vector of input features and yi is the corresponding bin values. Then, the K additive
tree functions in the LightGBM algorithm are represented as

ŷi =
K
∑

k=1
fk(xi), fk ∈ F

f (x) = wq(x)

, (1)

where fk represents the classification and regression tree (CART) model; wq(x) is the score
of the leaf node; q(x) is the specific leaf node; ŷi is the prediction value; F is the set space
that contains all trees. We utilize the root mean square error (RMSE) loss function during
training. RMSE is a widely used evaluation metric that quantifies the disparity between
predicted values and actual observations. By minimizing RMSE, our objective is to enhance
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the model performance in predicting the label. The mathematical expression of RMSE can
be illustrated as

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2, (2)

where i, from 1 to n, denotes the index of input instances, n is the number of instances, and
yi and ŷi are the ground truth and prediction, respectively. Consequently, the objective
function of all K additive trees can be simplified as

K

∑
t=1

√
1
n

n

∑
i=1

(yi − ŷi)
2 +

K

∑
t=1

Ω( ft), ft ∈ F, (3)

where t, from 1 to K, denotes the index of the tth tree, and Ω( ft) is the regularization value
of the tth tree. To train the model, residuals are calculated in each iteration relative to the
previous tree. The prediction for the tth iteration is the summation of the previous tree’s
prediction, i.e.,

ŷ(t)i = ∑ t ft(xi) = ŷ(t−1)
i + ft(xi), (4)

where ŷ(t−1) is the summation of all the predicted values before the tth tree; ft(xi) is the
predicted value of the tth tree. One base decision tree is sequentially chosen and added
to the ensemble model to reduce each iteration’s residual by minimizing the objection
function Fobj(t) during each iteration. The objection function of the tth iteration is

Fobj(t) =

√
1
n

n

∑
i=1

(
yi −

(
ŷ(t−1) + ft(xi)

))2
+ Ω( ft), (5)

where Ω( ft) is the regularization value of the tth tree. The LightGBM model can be
continuously optimized through the growth process of the tree model for constructing
feature splits. A detailed explanation of LightGBM is presented in Text S3 (Supplementary
Material), and the typical structure of LightGBM is shown in Figure 2.

To fully use the input data and consider the commonly used training data proportion
in ML, we clip the first 80% of each item of the collected time-series data (5–25 s) as the
training dataset and the remaining 20% (25–30 s) for testing. In order to find the optimal
hyperparameters, we divide the training dataset into five non-overlapping folds, i.e., using
the first four folds for training and the last one for validation. The hyperparameters of
the LightGBM model are tuned using grid search [41] and Bayesian optimization [42,43].
We first employ the Bayesian optimization to narrow the range of hyperparameters from
a large solution space to a certain degree, and then use the grid search method to search
for optimal hyperparameters in a small solution space. The optimal hyperparameters are
selected from the group with the lowest training loss in cross-validation, as shown in Table
S2 in the Supplementary Material. We use R2, a normalized parameter ranging from 0 to
1 (from bad to good in terms of prediction accuracy), to calculate the gap between the
prediction results and ground truth, i.e.,

R2 = 1 −

n
∑

i=1
(yi − ŷi)

2

n
∑

i=1
(yi − y)2

, (6)

where y denotes the mean of the ground truth. The R2 is a relative indicator of a machine
learning model’s prediction performance. Since we are comparing different machine
learning models’ performance on the same testing dataset in the present paper, the R2 can
satisfy our needs.
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Figure 2. Schematic of LightGBM based on the gradient boosting decision tree (GBDT).

It is worth noting that for time-series data, the LightGBM works differently from
deep-learning approaches, where a consecutive segment of time-series data from each
input feature is often used. Here, we make a “now” prediction, and instead, the LightGBM
models are trained step by step in temporal space, i.e., all input feature data points from
the same time instant are collected and trained in each time step using a histogram-based
algorithm to predict the normalized shear stress at the same time instance. Thus, temporal
relationships between adjacent data points in each time-series feature are not considered in
our LightGBM model. To achieve decent results, appropriate feature engineering should be
conducted for time-series data to improve the prediction accuracy of LightGBM models.
This can be completed by filtering the input feature data based on their importance ranking
according to the information gained in training, which measures the predictive ability of a
feature on the target by counting the number of times an input feature has been used in
node splitting in a decision tree [44]. Additionally, the LightGBM approach can effectively
preserve each feature’s physical meaning, allowing for straightforward interpretations of
prediction models compared to deep learning. Upon acquiring a decent LightGBM model,
the SHAP value approach [44], as will be illustrated next, can be employed to quantitatively
trace back and interpret the contribution of input features to the prediction results.
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2.3. SHAP (Shapley Additive exPlanation) Value

Interpretation of input features is a crucial part of the applications of ML models to
real-world problems since it facilitates our understanding of the underlying physics in the
trained model and also helps evaluate whether the model could meet the initial expectation.
After obtaining the best ML model, the contribution of each input feature can be quantified
using the SHAP value approach, a method developed from cooperative game theory [44].
The SHAP value is an additive feature attribution method. Specifically, at a time instant,
the summation of the SHAP values of all input features is equal to the predicted value
minus the mean predicted value of all input features, i.e.,

p
∑

j=1
ϕj( f̂ ) =

p
∑

j=1
(βjxj − E(βjXj))

= (β0 +
p
∑

j=1
βjxj)− (β0 +

p
∑

j=1
E(βjXj))

= f̂ (x)− E( f̂ (X))

(7)

Here, j, from 1 to p, denotes the index of input feature; f̂ (x) represents the model prediction
of input instant x; ϕj( f̂ ) represents the contribution of model prediction f̂ (x) from input
feature j; βj is the weight of input feature j; xj denotes the contribution of input feature j;
Xj represents the set of model prediction of feature j; E(βjXj) is the average contribution of
prediction for feature j. By calculating the SHAP values, the evolution of the contributions
of each input feature on the prediction results with respect to time can be obtained.

3. Predictions

This section demonstrates how the input features can be optimized to achieve better
prediction performance. The purpose is to identify the appropriate procedure upon which
the information in input features can be fully excavated. With the appropriate procedure,
the laboratory slip events can be accurately and efficiently predicted when abundant
frictional dynamics data are available.

3.1. Input Feature Data Optimization

As mentioned earlier, the fault dynamics data collected at 2203 densely distributed
sensor points may contain redundant and correlated information. Here, we filter the data
by first exploring the optimal number of input features that are representative of the fault
system from an ML prediction viewpoint. This is achieved by training and testing a series
of LightGBM models using data from an increasing number of sensor points, say, 1, 5,
10, 20, 50, 100, 200, 500, 1000, 1500, and 2203. For each of these numbers, we randomly
draw data from all the 2203 sensor points using the specified number of sensors and then
use the selected data to train a LightGBM model and test its performance. The procedure
is repeated ten times for each number (except 2203 since all data are used) to alleviate
uncertainty. Note that for each sensor, all four items of time-series data, i.e., Vx, Vy, Dx, and
Dy, are used in the training and testing.

The testing performance of each trained LightGBM model in terms of R2 and the
required number of epochs for convergence in training are presented in Figure 3a,b. It is
manifest that the prediction accuracy of the trained LightGBM models is poor when the
number of sensor data used is less than 10. The accuracy significantly improves when
the sensor number exceeds 20 (Figure 3a). As the number continues to increase, the
R2 mainly hovers around 0.8, while the models’ training expense significantly increases
(Figure 3b). Particularly, we reach an R2 of 0.82 for the LightGBM model trained using all
the 2203 sensor data without screening (Figure 3a); however, the time needed in training is
very demanding, i.e., the training takes an epoch of ~3300 upon convergence (Figure 3b).
These results demonstrate that the dense fault dynamics data at various sensor points on
the shearing plates and inside the gouge do contain effective information regarding the
shear stress of the fault, and the LightGBM model trained using a decent amount of sensor
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data can adequately capture the complex relations between microscopic frictional dynamics
in the sheared granular fault system and the macroscopic slip events. In the meantime, this
also confirms that the data from the 2203 sensors indeed have redundant information.

1 5 10 20 50 100 200 500 1000 1500 2203

(a) Number of sensors

0.0

0.2

0.4

0.6

0.8

1.0

2
R

1 5 10 20 50 100 200 500 1000 1500 2203

(b) Number of sensors

0

1000

2000

3000

4000

E
p
o
ch

Figure 3. Box plots of the LightGBM model performance trained using the data from an increasing
number of sensors. The training and testing are repeated ten times for each sensor number to obtain
the statistics. (a) Statistics of the testing R2 of the ten LightGBM models trained under each sensor
number. (b) Statistics of the required training epochs for convergence for the ten LightGBM models
trained under each sensor number. Note that the model trained using all the 2203 sensor data is not
repeated, and the results are indicated by a single blue bar.

Compromising the training efficiency and prediction accuracy, we choose an optimal
number of sensor points of ~20 for feature filtering, corresponding to ~80 (~20 × 4) input
features. To optimize the 8812 input features, we calculate and rank the importance values
of each input feature based on the LightGBM model trained using all the 2203 sensor
data. Finally, we choose a list of 88 features with top rankings as the optimized feature
dataset. In contrast, the remaining features mainly have importance values in more than
one order smaller than the largest one. Note that the exact number of sensors related to
these 88 selected features is more than 22 since maybe only 1–2 items of time-series data
from one sensor have been selected to form the optimized feature dataset. Due to space
limitations, only the top 50 optimized input features are presented in Figure 4.

3.2. Prediction Using Optimized Data

We proceed by retraining and testing a LightGBM model using the 88 optimized
input features. As shown in Figure 5a, the ML model trained on the optimized features
generates an R2 of 0.90 and RMSE of 0.0045 for testing, outperforming the previous model
trained using all 8812 input features (Figure 3a). This demonstrates that although only
88 input features are used here, the trained model can achieve a better prediction accuracy
than the one trained using all data. In other words, the fault dynamics information in the
88 optimized input features is sufficient to represent the dynamics of the entire sheared
granular fault system; in contrast, the remaining unused features are mainly redundant
to the prediction of normalized shear stress. It is also worth noting here that the training
efficiency is significantly improved, as evidenced by the fact that the RMSE converges
after only ~100 epochs (see inset of Figure 5a), which contrasts the ~3300 epochs needed to
converge in the previous training where all input features are used (Figure 3b). Additionally,
the RMSE evolution on the testing set shows no significant degradation, indicating no
sign of overfitting. In general, training LightGBM models on the optimized feature data
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can reduce the chance of model overfitting, improve prediction accuracy, and enhance
training efficiency.
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Figure 4. The top 50 optimized input features with higher importance values. For the names of
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is given on the right side of the horizontal bar.
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Figure 5. The prediction results of the two trained LightGBM models, together with the 95% confi-
dence intervals (light blue shaded region). (a) Performance of the model trained with the optimized
sensor data on the testing set. (b) Performance of the model trained with the optimized sensor data
and their statistics on the testing set. The inset in each subfigure presents the evolution of RMSE for
the corresponding model during training and testing.

3.3. Prediction Using Optimized Data and Their Statistics

In laboratory-earthquake-related ML practices, to fully exploit the underlying informa-
tion from the obtained fault dynamics data and to achieve better prediction performance,
the statistics of raw data are also commonly used as input features to train the prediction
models [17,28,45]. Here, on top of the 88 optimized time-series data, we use the sliding
time window approach to calculate 8 statistical parameters, such as the mean, variance,
skewness, kurtosis, quartile, 1st percentile, 91st percentile, and median of the data located
in each window, for each item of the time-series data and comprises a total of 792 input
features (88 × 9) for ML training and testing. The size of the sliding window used to
calculate the statistics is 300 ms, which is chosen based on the fact that the periods of most
stick-slip cycles are within the range of 300 ms in our FDEM simulated results. Adjacent
sliding windows overlap each other by 299 ms. Again, we train and test a LightGBM model
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using the 792 new input features and obtain an improved R2 = 0.94 and RMSE = 0.0035
for testing. As shown in Figure 5b, the predicted normalized shear stress shows a very
good match with the actual values. Although the training takes more epochs (~200) before
reaching stable results (inset of Figure 5b) than the previous training using only the 88 opti-
mized feature data (inset of Figure 5a), compared with the first case using all the 8812 input
features (Figure 3), the result of this model is notably superior in terms of both prediction
accuracy and training efficiency.

Through the above progressive adjustment of the input features from raw data to the
optimized data and to their statistics, the prediction performance of the trained LightGBM
models has been gradually improved. Particularly, the statistics-based input features pro-
vide an in-depth excavation of the raw data, which helps to better capture the distribution
characteristics and variation trends of the data, thereby improving the model’s perfor-
mance. We also provide a precise visualization of the predictive performance of the two
LightGBM models (models related to Figure 5a,b) on the testing dataset in Figure S3 of the
Supplementary Material.

One may easily argue that when statistics-based features are used, there are cases
where slip events are predicted prior to actual events (e.g., the slip event at 29.0 s in
Figure 5b), i.e., an artificial smoothing effect. However, as shown in Figure 5a, without
using statistics-based features, there are also predicted slips before the actual slip events,
e.g., the same slip event at 29.0 s. Therefore, we would attribute the smoothing largely
to prediction inaccuracy. Given the complexity of our FDEM-simulated irregular stick-
slip cycles, a precise prediction is challenging. Nevertheless, the model trained using the
statistics-based features indeed improves the prediction accuracy, as is clearly evidenced
by the increased R2 from Figure 5a to Figure 5b.

4. Discussion

The above ML analyses based on the dense fault dynamics data extracted from the
FDEM simulated sheared granular fault system demonstrate that upon appropriate op-
timization of input features, we can achieve acceptable performance and accuracy for
laboratory earthquake prediction using LightGBM. However, ML models are often called
“black boxes”, which means that although we may reach accurate predictions, the mech-
anism behind the models remains elusive. To probe into the working mechanism of the
LightGBM prediction model, we evaluate the role each input feature plays in the prediction
using the SHAP value approach, which quantifies the direct contribution of an input feature
to the predicted value at each instant of time. Specifically, the positive SHAP value of an
input feature results in an increase in the predicted normalized shear stress at that time
and vice versa. Based on the last LightGBM model with the highest prediction accuracy—
the one trained using the optimized data and their statistics (i.e., 792 input features), we
calculate the SHAP values of each input feature at each instant of time.

Due to space limitations, we first plot in Figure 6 the top 50 input features with large
cumulative magnitudes of the yielded SHAP values (in descending order). The cumulative
magnitude of SHAP values is the summation of the magnitudes (absolute values) of all
yielded SHAP values for an input feature, indicating a feature’s overall contribution to
prediction at all times. The actual SHAP value versus the corresponding feature value (rela-
tive value from low to high, denoted by the colour bar) at each instant of time is presented
in Figure 6. An enlarged version listing the top 200 input features is presented in Figure
S4 in the Supplementary Material. These plots show that the different microscopic fault
dynamics data types have completely distinct contributions to the predicted normalized
shear stress.
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with relatively larger cumulative magnitudes of the yielded SHAP values. The results are based on
the last LightGBM model trained using the optimized input features and their statistics. Typical input
features analysed in Figure 7 are marked in bold.
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Figure 7. The evolution of SHAP values of typical features with respect to time for the LightGBM
model trained using the optimized data and their statistics (i.e., 792 input features). (a) The evolution
of SHAP values of Dx at sensor No. 396, where the increase/decrease in SHAP value has a similar
trend to Dx. (b) The evolution of SHAP values of Vx at sensor No. 2112, where spikes occur at slips
and cause a sharp drop in its SHAP value. (c) The evolution of SHAP values of Dy at sensor No. 283,
where Dy shows a slight increase during the stick phases and sudden drop at slips; however, it mainly
only causes a sharp increase in its SHAP value when a slip occurs.
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The top input features shown in Figure 6 (e.g., the top 10–15) yield both positive and
negative SHAP values. The behaviour of this type of input feature is further detailed
in Figure 7a by the temporal evolution of the SHAP value of an exemplar Dx at sensor
No. 396, alongside the change of Dx and the normalized shear stress for comparison. As
shown in Figure 7a, the changing trend of the SHAP value is roughly consistent with the
feature value, i.e., during the stick stages, both the feature value and SHAP value increase,
and sudden drops occur at slips for both. Moreover, the larger the feature value is, the
higher the generated SHAP value will be (although imprecisely). The rough consistency
between the input feature and the corresponding SHAP value in both the stick and slip
stages is commonplace for the majority of the top input features, especially the ones
related to Dx and its statistics, e.g., the data collected at sensors with No. 224, 408, and
417, among many others (Figure S4). This agrees with our intuitive understanding that
features with better prediction capability should have similar evolution patterns and pace
to the prediction target. However, not all Dx-related features exhibit similar evolution
patterns to the predicted target. As shown in Figure S5 of the Supplementary Material, the
correlation between the listed Dx features and the normalized shear stress is considerably
weak. Nevertheless, the SHAP value provides a powerful approach that helps filter the
Dx-related features with high correlations and contributions to the prediction target.

There are also input features that mainly yield negative SHAP values, e.g., the Vx of
sensor No. 2112 (Figure 6). As detailed in Figure 7b regarding its temporal evolution
versus the SHAP value and normalized shear stress, when a slip occurs, a negative SHAP
value will be generated, together with a spike in Vx (can be positive or negative). However,
during the stick phases, Vx is very small, and the yielded SHAP value is mainly around
zero, thus having no distinct contribution to the prediction. These demonstrate that this
type of input feature (Vx) mainly contributes to the prediction results at slips by bringing
down the predicted normalized shear stress. Similar phenomena can also be found in the
Vx of a few other sensors, e.g., the ones with No. 406, 1004, and 1888 (Figure S4).

On the contrary, a small number of input features behave the opposite, e.g., the Dy of
sensor No. 283 (Figure 6). Specifically, when a slip occurs, this type of feature mainly
generates positive SHAP values and pushes up the predicted normalized shear stress
(Figure 7c). During stick phases, although we can also witness an increase in these feature
values (similar to Dx), they mainly have minor contributions to the prediction results,
i.e., the yielded SHAP values are mainly around zero or of a small negative value. These
input features include the Dy of sensors with No. 8, 12, and 285 (Figure S4). It is worth
noting that the Vy of sensors barely has notable contributions to the prediction results, as
there are only 4 input features related to Vy on the top 200 feature list shown in Figure S4.

The SHAP values of input features can help uncover local friction dynamics’ role
in laboratory earthquake prediction. From the above analyses, we find that the input
features related to Dx mainly occupy the top of the list shown in Figure 6 (or Figure S4),
simply because these top features evolve at a similar pace to the normalized shear stress
in both the stick and slip phases. This is followed by the input features related to Dy.
However, compared with Dx, the magnitudes of the yielded SHAP values are relatively
smaller. We suspect this may be partially caused by the fact that the input features related
to Dy only contribute to the prediction results at slips. We can observe a small number
of input features related to Vx on the list in Figure 6 (or Figure S4), and they also only
contribute to the prediction results at slips. We barely see input features related to Vy in
Figure S4. Details of the sensor numbers and their locations are presented in Figure 8.
Locations of the sensors related to the top 200 input features listed in Figure S4 are also
presented in Figure 8 (coloured). All these demonstrate that, in general, the input features
related to displacements contribute more to the prediction results than those associated
with velocity. In addition, the features related to the shearing direction (i.e., the x direction)
can better reflect the friction dynamics of the system and thus have higher contributions to
the prediction results than those in the y direction.
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Figure 8. Sensor locations and their numbers in the granular gouge fault system. The sensors related
to the top 200 input features presented in Figure S4 are coloured according to their normalized
importance values.

Through the SHAP value analysis, accurate evaluations of the contribution of each
feature to the predicted normalized shear stress can be obtained. Therefore, the LightGBM
prediction model combined with the SHAP value analysis can quantify the impact of
microscopic fault dynamics data on the macroscopic stick-slip response in a sheared granu-
lar fault system. The above analysis also implies that for natural earthquakes, and even
tsunami prediction, the displacement data (or equivalent data) monitored near the fault
may be more valuable than velocity data, and the data resolved along the fault shearing
direction are more valuable than those perpendicular to the fault. With the SHAP value
analysis, we can further optimize the earthquake prediction. The arrangement of natural
earthquake sensor positions is a key factor. By introducing our model, we can optimize this
arrangement. Specifically, we can select the positions corresponding to the most important
features based on the analysis results of the model and arrange sensors at these positions.
In this way, we can make the most of limited resources and improve the accuracy and
efficiency of earthquake prediction.

It is worth noting that due to the large dimension of the dense fault dynamics data
used in the present research (say, 8812), dimensionality reduction on the input features is
necessary. The LightGBM approach employed here could achieve our goal of effectively
filtering the redundant information from a large number of fault dynamics data and
preserving the original physical meanings of the final optimized data, which facilitates the
interpretability of the prediction model. Therefore, the LightGBM model together with the
SHAP value analysis can efficiently and accurately predict laboratory earthquakes based
on dense fault dynamics data and may also help explore valuable precursors for upcoming
slip events.

5. Conclusions

In this paper, we have simulated a sheared granular fault system using the FDEM to
collect fault dynamics data (Vx, Vy, Dx, and Dy) at 2203 “sensor” points during stick-slip
cycles and trained a series of LightGBM models by optimizing and excavating the input
features. The prediction performance of these models is tested upon the generation of
stick-slips characterized by the normalized shear stress between the shearing plates and
gouge. The purpose is to explore the appropriate ML model training procedure and achieve
better laboratory earthquake predictions when abundant fault dynamics data are available.
The SHAP values of input features are also calculated to quantify the contribution of each
input feature to the prediction results.
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The ML study uses the sensor data as input features and the gouge-plate normalized
shear stress as the label, and the first 80% of the time-series proportion is reserved for
training and the remaining 20% for testing. We first optimize the 8812 input features
by randomly selecting an increasing number of sensor data and training and testing the
LightGBM models’ performance. When the number of sensors used in training exceeds 20,
the R2 mainly hovers around 0.8, while the models’ training expense significantly increases.
We choose an optimal number of sensor points of ~20 by considering both the model’s
prediction accuracy and training efficiency. Then, 88 input features with top importance
are selected as the optimized dataset based on the LightGBM model trained using all the
8812 input features. Following this, the LightGBM model trained using the optimized
dataset yields an R2 of 0.90; however, the training efficiency is remarkably enhanced. Then,
to fully use the underlying fault dynamics information, by calculating the 8 statistical
parameters of the 88 optimized features, we compose an enlarged dataset with 792 input
features and retrain a LightGBM model with a significantly improved prediction accuracy
of R2 = 0.94. Based on the final trained LightGBM model, we extract the SHAP values of
each input feature and compare them with the normalized shear stress. We find that the
input features related to displacements contribute more to the prediction results than those
associated with velocity, and the ones in the x direction (fault shearing direction) can better
reflect the friction dynamics of the system than those in the y direction.

The analyses demonstrate that the dense fault dynamics data obtained from the gouge
and plates contain the necessary information to train appropriate ML models so that the
fault friction state can be adequately predicted. However, the dense fault dynamics data
may contain redundant information and increase training expenses. Using ML approaches
to screen out correlated information and optimize the data can facilitate the training
process and achieve better prediction results. Additionally, appropriate utilization of the
statistics of the fault dynamics data may help extract important hidden information from
the data and enhance the prediction performance. Finally, the SHAP values obtained with
the trained LightGBM model can quantify the contribution of each input feature to the
prediction results.

The data collection process from earthquake sensors is vital. Aim to gather informa-
tion from sensors that are rich in earthquake catalogues and closely tied to earthquake
occurrences. Trying to gather data from sensors deployed in locations that the machine
learning model considers to be of high importance will significantly aid in earthquake
prediction. This study offers useful guidance for this process. Constructing a prediction
model requires diligent data screening, feature extraction, and model optimization. These
steps help to create a reliable representation of complex physical processes. This research
provides an effective example of how to create an efficient prediction framework. The
SHAP value analysis emphasizes the importance of features such as displacement and dis-
placement statistics. This insight offers a fresh viewpoint for exploring potent earthquake
precursor signals and setting up early warning systems. Our work has broad applications.
While it can predict laboratory earthquakes, its framework, methods, and conclusions
provide a solid base for forecasting modelling processes to natural faults. This broadens the
potential for employing machine learning in natural earthquake prediction. This work can
shed light on natural earthquake prediction in terms of selecting valuable monitoring data
and training appropriate ML models and also opens new possibilities to explore valuable
precursors for earthquake prediction.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/jmse12020246/s1. Text S1: Brief introduction of FDEM; Text S2:
Supplementary explanation of FDEM model setup; Text S3: Light Gradient Boosting Machine
(LightGBM); Figure S1: Numerical representation of the granular fault system using DEM and FDEM.
(a) In DEM, the plates are simplified by a set of bonded particles, and the gouge layer is composed of
a series of rigid particles. Therefore, both the gouge particles and the shearing plates cannot deform.
(b) In FDEM, the plates are explicitly represented, and both plates and particles are further discretized
into finite elements to capture their detailed deformation and movement; Figure S2: Probability
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density distribution of the seismic moment of all slip events, where the detailed calculation of the
moment is explained by Gao et al. [31]. The results agree with the physical experiment data collected
in Geller et al. [37]. The probability density distribution is consistent with the Gutenberg-Richter
distribution and is predicted to scale as M−3/2 (the power −3/2 is within the range of −1.4 to −1.8
observed in natural earthquakes; Figure S3: Performance of the two LightGBM models trained with
different datasets. (a) Training with optimized sensor data. (b) Training with optimized sensor data
and their statistics; Figure S4: The SHAP value versus the feature value at each instant of time for
the top 200 input features with relatively larger cumulative magnitudes of the yielded SHAP values.
The results are based on the last LightGBM model trained using the optimized dataset and their
statistics; Figure S5: Evolutions of Dx for several sensors and their comparison with the normalized
shear stress. (a) Normalized shear stress. (b) Dx of sensor No. 95. (c) Dx of sensor No. 295. (d) Dx
of sensor No. 1832; Table S1: Material and numerical simulation parameters; Table S2: The optimal
hyperparameters of the LightGBM model trained using 8812 features; References [31–42,45–60] are
citied in the Supplementary Materials.
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