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Before the widespread adoption of the digital seismographs, seismic records were stored
in analog form on paper and manually read by analysts. These analog seismograms con-
tained various useful information and were crucial for seismic research. To meet the
demands of the modern computational analysis, researchers must digitize historical ana-
log seismograms and extract information. In this article, we present a novel approach to
automatically digitize analog seismograms. Initially, Otsu threshold segmentation was
applied to the analog seismograms to remove underlying noise and improve their clarity.
Subsequently, a novel dynamic distributed seismic waveform onset-point-search algo-
rithm was implemented, which automatically locates the onset point of each seismic
waveform baseline in analog seismograms and accurately determines the total number
of seismic waveform curves. To address the complexity and diversity of seismic wave-
forms, we implemented an innovative seismic waveform classification algorithm that
can distinguish between complex waveforms and smoothwaveforms, and further imple-
mented a new smoothwaveform removalmethod to eliminate interference from smooth
waveforms during complex waveform extraction. Then, we used a YOLOv9s-based
model to identify time markers within the seismic waveforms for removal. In addition,
in the seismic waveform digitization extraction and reconstruction phase, we imple-
mented a novel method for extracting significant seismic waveform features and geo-
metric restoration for peak and trough feature extraction and geometric restoration,
as well as vertical feature extraction of seismic waveforms. Finally, we implemented a
new waveform sequence integration and time mapping model, which can effectively
reconstruct seismicwaveform data based on the extracted features andmap arrival times
to each waveform point. Experiments have verified the significant superiority and sta-
bility of the methods implemented in this article for digitizing analog seismograms.

Introduction
In the history of seismology, analog seismometers were exten-
sively used to record ground-motion data, primarily dating back
to the late nineteenth century. These valuable historical seismic
records, preserved on the smoked paper or a film, constitute a
rich seismic dataset (Okal, 2015). As time goes by, the storage,
management, and analysis of these analog data became increas-
ingly necessary. Especially before the widespread adoption of
digital seismometers, these analog records were a valuable
resource for analyzing seismic activity (Stein and Wysession,
2003). The U.S. Geological Survey and other relevant agencies
have retained a large number of such records, which meticu-
lously document the continuous motion of the ground
(Rukstales and Petersen, 2019). Despite advancements in storage
technology, many early seismic records are still stored on
smoked paper or film, recovering and effectively utilizing this
information remains a significant challenge for researchers.

Since the end of the twentieth century, scholars have begun to
employ various digitization technologies to convert these analog
seismic records into digital formats for better storage and analy-
sis of the data (Ishii et al., 2014; Xu and Xu, 2014; Wang et al.,
2016). By utilizing high-resolution scanning technology and
image processing software, researchers have been able to extract
time-series data from old seismograms using tools such as
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DigitSeis and TESEO (TErrain SEismic Observation) developed
in the MATLAB (see Data and Resources; Pintore et al., 2005;
Bogiatzis and Ishii, 2016). Through the development of multi-
platform graphic vectorization and calibration software, like the
software used in analyzing the 1928 Parral earthquake in
Mexico, researchers can more accurately analyze historical seis-
mic events (Corona-Fernández and Santoyo, 2023).

With the rapid development of deep learning technology, its
application in multiple fields has demonstrated significant
potential (He et al., 2016; Devlin et al., 2019; Leng et al., 2024).
Deep learning has been applied to the processing of analog
seismic records, demonstrating potential in handling analog
records in seismic control experiments (Wang et al., 2018).
Moreover, deep learning techniques such as DevelNet have been
proven to effectively detect seismic activity from Develocorder
films, offering new possibilities for extracting information from
historical seismic data (Wang et al., 2022). Deep learning
technologies have also shown their potential in the automatic
digitization attempts of strong-motion seismograms at the Japan
Meteorological Agency (Furumura et al., 2023).

In summary, the digitization of analog seismic records is a
crucial task in seismological research, not only aiding in the
preservation of historical seismic information but also providing
significant support in understanding seismic processes and
reducing earthquake disaster risks (Bungum et al., 2003). To
accelerate the digitization of these precious analog seismic rec-
ord drawings, we propose a novel approach to automatically
digitize analog seismograms using deep learning, aimed at
achieving rapid and accurate digitization of seismic record wave-
forms. Specifically, we selected 500 seismograms collected by the
Chengde Seismic Station in North China in 1991 as our study
subjects. That year, several earthquakes of magnitude 6.5 and
above occurred in northern China. These paper seismograms
were scanned using professional scanners and converted into
raster images, providing a rich data source for our research.

Waveform Structural Analysis and
Separation
Threshold segmentation of analog seismograms
In the process of analyzing analog seismograms, we face major
challenges including stains, defects, blurred edges, and noise on
the seismograms, all of which significantly impact the clarity
and accuracy of the analog seismograms. In response to these
challenges, we note that these raster format analog seismo-
grams exhibit extreme contrast characteristics in the distribu-
tion of gray values, for which most pixels are either very dark
(gray value close to 0) or very bright (gray value close to 255),
with few intermediate gray levels, indicating high contrast in
the seismograms. Based on this observation, we opt to use
Otsu’s method for analog seismograms threshold segmentation
(Otsu, 1979). Otsu’s method is an image threshold segmenta-
tion technique based on maximizing interclass variance, auto-
matically selecting a threshold to divide the image pixels into

two main categories: foreground and background, thereby
maximizing the difference between these two categories. By
applying the Otsu algorithm, we converted the original gray-
scale analog seismograms (Fig. 1a) into binary seismograms
(Fig. 1b), thus reducing the impact of factors such as stains,
defects, blurred edges, and noise, significantly enhancing the
accuracy of seismic waveform identification and the overall
quality of the analog seismograms.

Dynamic distributed waveform onset search
In our research, we adopted a coordinate system with the ori-
gin at the top-left pixel of the seismogram, in which the x axis is
positive to the right and the y axis is positive downward.

We implemented a dynamic distributed waveform onset
search algorithm, which will be utilized subsequently. This
algorithm is used for searching the baseline onset of each wave-
form and for calculating the number of waveforms in the ana-
log seismograms. Let I be the matrix representation of the
drawing, in which I�x,y� represents the pixel value at the
xth column and yth row. First, The search starts with a fuzzy
search, selecting the top-left corner (0,0) of the analog seismo-
grams as the global onset point and scanning downward along
the vertical direction y. We identify the transition points for
which the pixel color changes from white to black, marked
as the upper edge point of waveform i, yupper,i. This calculation
is shown in equation (1). The scan continues in the same col-
umn until the transition from black to white is identified,
marked as the lower edge ylower,i of waveform i, as shown in
equation (2). Once both the upper and lower edges of a wave-
form are sequentially and successfully identified, a complete
waveform is recognized. Once the scan reaches the bottom
of the column, it returns to the global onset point, moves right
by n pixel steps, and continues the search in the second column
until the set number of columns is searched, completing the
fuzzy search. The fuzzy search is illustrated in Figure 2a.
The core purpose of fuzzy search is to filter the reference
ranges for waveform width and spacing, thereby providing
an effective threshold for subsequent precise search. The num-
ber of search columns for fuzzy searches can be freely adjusted
based on the characteristics of the seismograms to accommo-
date a variety of seismogram types. The widthWi of waveform
i is calculated as shown in equation (3). For vertically adjacent
waveforms i and i� 1, their spacing Di,i�1 is calculated as
shown in equation (4). All calculated widths Wi and spacings
Di,i�1 are collected into two datasets W and D, respectively.

yupper,i � minfyjI�x,y� � 0∧I�x,y − 1� � 1g, �1�

ylower,i � maxfyjI�x,y� � 0∧I�x,y� 1� � 1g, �2�

Wi � ylower,i − yupper,i, �3�
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Di,i�1 � yupper,i�1 − ylower,i: �4�

Afterward, outlier processing and statistical analysis are
performed on datasets W and D. We calculate the quartiles
Q1 and Q3 and their interquartile range for both W and D
(Draper, 2011), as shown in equation (5). Subsequently, based
on the statistical theory and widely applied empirical rules, we
define the lower bound (LB) and upper bound (UB) for out-
liers, as calculated in equations (6) and (7). Outliers in W and
D that fall below the LB or above the UB are filtered out.
Statistical analysis is conducted on the filtered datasets, includ-
ing the calculation of the mean μ, variance σ2, and standard
deviation σ, as shown in equations (8)–(10).

IQR � Q3 − Q1, �5�

LB � Q1 − 1:5 × IQR, �6�

UB � Q3 � 1:5 × IQR, �7�

μ � 1
n

Xn
i�1

xi, �8�

σ2 � 1
n

Xn
i�1

�xi − μ�2, �9�

σ �
�����
σ2

p
, �10�

in which xi represents an indi-
vidual observation in the data-
set, and n is the total number of
observations. Based on the
assumption of a normal distri-
bution, data points that fall
within the range of μ� σ are
retained to determine the main
concentration trend of the
data. From the processed data-
set W, the maximum value is
selected as Wmax, and the min-
imum value asWmin. From the
processed dataset D, the maxi-
mum value is selected as Dmax,
and the minimum value
as Dmin.

Finally, a precise search is
conducted, starting from the
global origin of the seismogram
as the scanning onset point

xonset and performing a vertical scan using the same method
as in the fuzzy search phase to identify waveforms. If the iden-
tified waveform i satisfies equations (11) and (12), then wave-
form i is valid. If the waveform is valid, the scan continues
downward; if not, the onset point is adjusted downward for scan-
ning. For the first identified waveform (i � 1), xonset is adjusted
to one pixel to the right of the global origin of the seismogram, as
calculated in equation (13). For the second and subsequent wave-
forms (i ≥ 2), xonset is adjusted to one pixel to the right of the last
identified and standard-compliant waveform’s lower edge point
xlower,last, as calculated in equation (14). Once the scan reaches
the bottom of the seismogram, the precise search is completed,
as shown in Figure 2b. Both xonset and xlower,last are x coordinates.
The midpoint between the upper and lower edge points of each
waveform is taken as the waveform search point, and all wave-
form search points are moved parallel to the x coordinate of the
first waveform search point to establish the baseline onset of the
waveforms, as shown in Figure 2c.

Wmin ≤ Wi ≤ Wmax �i � 1…n�, �11�

Dmin ≤ Di,i�1 ≤ Dmax �i � 2…n�, �12�

x � xonset � 1, �13�

x � xlower,last � 1: �14�

Figure 1. (a) Original grayscale seismogram and (b) binary seismogram.
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Waveform classification and removal of smooth
waveforms
In this study, seismic waveforms are classified into two catego-
ries: smooth waveforms, which exhibit almost no significant
fluctuations on the baseline, and complex waveforms, which dis-
play noticeable fluctuations on the baseline. To effectively dis-
tinguish between these two types of waveforms and mark them
for subsequent removal of smooth waveforms, this research
employs a two-stage strategy that utilizes the significant
differences in waveform characteristics between complex wave-
forms and smooth waveforms: specifically, the number of white
pixels on the baseline of complex waveforms far exceeds that of
smooth waveforms. However, since using a straight baseline can

cause errors in certain cases, we replace the baseline with a vola-
tility midline when calculating the number of white pixels.

Initially, the dynamic distributed waveform onset search
algorithm is used to determine the baseline onset of all wave-
forms within the manually selected fluctuation area (Fig. 2d).
Subsequently, we perform a lateral fluctuation scan from the
baseline onset along the waveform to the endpoint (edge of

Waveform spacing marker
Waveform recognition marker

Waveform baseline onset
Fluctuation area

Complex waveform fluctuation midline
Smooth waveform fluctuation midline

(a)

(d)

(e)

(b) (c)

Figure 2. (a) Fuzzy search, (b) precise search, (c) the baseline onset
of the waveforms, (d) fluctuation area, and (e) waveform clas-
sification. The color version of this figure is available only in the
electronic edition.
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the fluctuation area) and calculate the number of white pixels
on the volatility midline. If a waveform has the highest number
of white pixels on its volatility midline, it is classified as a com-
plex waveform; otherwise, it is classified as a smooth waveform
(Fig. 2e). The specific steps are as follows.

1. Use the dynamic distributed waveform onset search to scan
the fluctuation area to determine the baseline onset for each
waveform i, �xonset,i,yonset,i�.

2. For each waveform i within the fluctuation area, select the
baseline onset �xonset,i,yonset,i� as the starting point. Check
the pixel value I�xonset,i,yonset,i�.
• If I�xonset,i,yonset,i� � 255 (white), it is directly considered
as the fluctuation midline point.

• If I�xonset,i,yonset,i� � 0 (black), perform a vertical scan
with a step size of one pixel along the positive y axis
to �xonset,i,yonset,i � 2Δy� (Δy is the average width of
the waveform, obtained through the dynamic distributed
waveform onset search algorithm). Check for any color
transition points within this area. If a transition point
is found, record it as max. If no transition point is
detected, use the previous max value. Then, scan along
the negative y axis to �xonset,i,yonset,i − 2Δy� and similarly
check for color transition points. If a transition point is
found, record it as min. If no transition point is detected,
use the previous min value. Calculate the midpoint
between max and min as p. Set �xonset,i,p� as the fluc-
tuation midline point.

3. Update the coordinates xonset,i � xonset,i � 1, yonset,i � p.
4. Repeat steps (2) and (3) until the waveform has been com-

pletely scanned. Then, move the algorithm to the baseline
onset of the next waveform and repeat the entire process
until all waveforms in the fluctuation area have been
scanned.

5. Check the pixel value I�x,y� at each fluctuation midline
point for each waveform. If I�x,y� � 255 (white), count
it toward the total number of white pixels. For each wave-
form i, the total number of white pixels on its fluctuation
midline Bi is calculated using equation (15), in which
�I�x,y� � 255� is an indicator function that checks if the
pixel at position �x,y� is white, �waveformi� is the set of fluc-
tuation midline points for waveform.

6. After calculating the total number of white pixels on the
fluctuation midlines of all waveforms, mark the waveform
with the highest Bi value as a complex waveform, whereas
the others are marked as smooth waveforms.

In the waveform classification algorithm described earlier,
the selected fluctuation area contains only one complex wave-
form. For cases where the fluctuation area contains multiple
complex waveforms, a threshold for white pixel count can
be set according to the characteristics of different seismograms
to select multiple complex waveforms.

Bi �
X

�x,y�∈�waveformi �
�I�x,y� � 255�: �15�

After classifying the waveforms, we propose a structure-
based smooth waveform removal algorithm to obtain complex
waveforms without interference from smooth waveforms. The
specific steps are as follows.

1. From the fluctuation area, select the baseline onset of the
first waveform �xonset1,yonset1�.

2. Vertically, fix the x coordinate xonset1, and with a step size of
one pixel, first scan in the positive y direction up to
�xonset1,yonset1 � Δy� (Δy is the average waveform width,
obtained from the dynamic distributed waveform onset
search algorithm). Check for color transition points within
this area, and then scan in the negative y direction up to
�xonset1,yonset1 − Δy�, also checking for color transition
points within this area. If color transition points appear
in both the upper and lower directions within the area
�yonset1 � Δy,yonset1 − Δy�, convert all black pixels in this
range to white pixels; otherwise, leave unchanged.

3. Update the x coordinate xonset1 � xonset1 � 1, setting the
step size to one pixel value.

4. Repeat steps (2) and (3) until the processing of this waveform
is completed. Subsequently, the algorithm moves to the next
smooth waveform’s onset point and repeats the entire process
until all smooth waveforms within the fluctuation area have
been removed (the algorithm description is shown in Fig. 3).

Smooth waveforms are eliminated using the structure-based
smooth waveform removal algorithm, thereby excluding their
interference with the subsequent extraction of complex
waveforms.

YOLOv9 identifies time markers
In the seismogram analysis, time markers are key reference
points indicating the time axis of seismic waveforms. These
time markers enable us to perform precise time calculations.
However, when time markers overlap with complex waveform
regions, the removal of smooth waveforms can leave behind
these markers, thus interfering with subsequent waveform
extraction. We employ YOLOv9 to identify the time markers,
which can then be used for time calculations and removed to
prevent interference with waveform extraction.

YOLOv9 is an advanced object detection model chosen
for its balance between processing speed and accuracy
(Wang, Yeh, and Liao, 2024). The model incorporates pro-
grammable gradient information (PGI) technology and a
Generalized Efficient Layer Aggregation Network (GELAN)
architecture. PGI optimizes gradient transmission by intro-
ducing auxiliary reversible branches, ensuring that the key
gradient information is not lost in the multilayer network,
thus enhancing the model’s convergence speed. The GELAN
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architecture improves hierarchical feature aggregation,
enhancing the model’s performance on resource-constrained
devices. The architecture of YOLOv9 is divided into three
parts: the backbone network, the neck network, and the head
network. The backbone network is used for basic feature
extraction; the neck network performs multiscale feature
fusion; and the head network is responsible for object classi-
fication and localization.

We use YOLOv9s to detect the position of time markers, as
shown in Figure 4a,c. We horizontally shift the coordinate point
at the bottom left corner of the detection box to the right by Δy
(Δy is the average width of the waveform) to obtain a new point,
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Color transition point
Scan boundary points
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Smooth waveform removal point

Scan boundary points
Baseline point
Smooth waveform removal point

Figure 3. Smooth waveform removal algorithm description. The
color version of this figure is available only in the electronic edition.
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referred to as the timestamp base point (Fig. 4a). However, in
rare cases for which the time markers are deeply overlapping
with complex waveforms, detecting the positions of these time
markers becomes difficult, and we need to manually mark the
timestamp base points. Next, the dynamic distributed waveform
onset search algorithm, previously mentioned, determines the
row number of each timestamp base point. In subsequent steps,
we will use the timestamp base point and its row number to
calculate the arrival time of the waveform.

When time markers interfere with the extraction of complex
waveforms, we remove them, as shown in Figure 4c,d. However,
when time markers are deeply overlapping with complex wave-
forms, identifying and removing these markers becomes chal-
lenging. For these deeply overlapping time markers, manual
removal is required. In addition, the previously mentioned
smooth waveform removal algorithm will also partially remove
time markers that are deeply overlapping with complex wave-
forms while removing the smooth waveforms.

We collected and manually labeled 270 seismograms for our
dataset, which we divided into a training set (60%), a testing set
(20%), and a validation set (20%). The yolov9s was trained on
the training set, and its performance was evaluated on the testing
set. In the testing set, the specific metrics are as follows: precision
is 86.73%, recall is 81.67%, and the F1 score is 84.12%. These

results indicate that the YOLOv9s has high accuracy and strong
detection capability in the task of identifying time markers.
Despite using a relatively small training set, the YOLOv9s model
is still able to produce satisfactory results. In the future, as the
size of the training dataset increases, the model’s performance is
expected to improve further. In addition, our research found
that using deep learning models to detect types of time markers
with distinct features is more effective. However, the model per-
forms poorly for types of time markers with indistinct features
or those similar to waveform features.

Waveform Digital Extraction and
Reconstruction
Our strategy involves digitally extracting complex waveforms
from analog seismograms that are structurally complex and of
significant research importance while filling in smooth wave-
forms with corresponding line segments. This approach allows

Waveform recognition markerTimestamp base pointDetection box

(a) (b)

(c) (d)

Figure 4. (a) Detect time markers and find timestamp base points.
(b) Use the dynamic distributed waveform onset search algorithm
to locate the waveform row number for each timestamp base
point. (c) Detect time markers overlapping with complex wave-
forms. (d) After removing the time markers. The color version of
this figure is available only in the electronic edition.
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us to focus on the features of the seismic data that are most
likely to provide valuable insights into seismic activity, while
effectively managing less informative segments by simplifying
their representation.

Feature extraction of waveform peaks and
troughs
The key to the digital extraction of complex waveforms lies in
the feature extraction of peaks and troughs. Our method
involves scanning each column of pixels in complex waveforms
from top to bottom, starting from the top pixel y � 0 and scan-
ning down to the bottom of the column at y � H − 1 (in which
H is the height of the fluctuation area). We record the first
color transition point in each column as the upper edge point
of the waveform, and the last color transition point as the lower
edge point, thus obtaining two sets of coordinates: one set
describes the upper edge contour of the waveform, and the
other set outlines the lower edge contour (Fig. 5a).

We use a combination of cubic spline interpolation and
Gaussian filtering to process the waveform edge contours
(Deriche, 1993; Boor, 2001). First, we use cubic spline interpola-
tion to smooth and continuously process the entire edge contour
based on the upper and lower edge coordinates, filling in gaps in
the data to achieve a smoother and more coherent edge contour
(Fig. 5b). This interpolation method is achieved by constructing a
series of cubic polynomials (equation 16), interpolating between
each pair of adjacent data points and satisfying a series of
key conditions to ensure the continuity and smoothness of the
curve. Specifically, the interpolation condition requires the curve
to precisely match the data points (equation 17), the continuity
condition ensures a smooth transition between data points
(equation 18), and the natural boundary condition achieves a
natural transition at the endpoints of the sequence (equation 19).
Here, xi and yi are the coordinates of adjacent data points, and ai,
bi, ci, di are the coefficients of the curve in each interval.

Si�x� � ai�x − xi�3 � bi�x − xi�2 � ci�x − xi� � di, �16�

Si�xi� � yi, Si�xi�1� � yi�1, �17�

S′i�xi�1� � S′i�1�xi�1�, S′′i �xi�1� � S′′i�1�xi�1�, �18�

S′′0 �x0� � 0, S′′n−1�xn� � 0: �19�

However, due to the poor quality of the original seismo-
grams, sampling errors, or factors introduced during the inter-
polation process itself, the interpolation results may contain
slight fluctuations and noise. To effectively reduce these fluc-
tuations while preserving important features and details of the
edge contours, we use Gaussian filtering to further smooth the
interpolated edge contours. The Gaussian filter uses the

Gaussian function (equation 20) as a weighted average, apply-
ing a weighted average to each data point and its surrounding
neighborhood, thereby producing smoother results.

G�x� � 1������
2π

p
σ
e−

x2

2σ2 , �20�

in which x represents the offset of data points relative to the
current processing point, and σ is the standard deviation of the
Gaussian distribution that controls the range of the weight dis-
tribution. Choosing the appropriate σ value is crucial, a smaller
σ preserves more details but provides less smoothing, whereas
a larger σ produces smoother results but may blur important
features. In this study, we chose σ � 5. Through this method,
the Gaussian filtering further smooths the upper and lower
edge contours (Fig. 5c), closely approximating the true boun-
daries of the original waveform.

Next, we search for peak and trough features based on the
processed edge contours. Starting with the smoothed sequence
of upper edge contours, we examine the y values of each non-
boundary point (for each point 2 ≤ i ≤ n − 1) to determine
whether it is greater than its directly adjacent points. If a
point’s value is greater than that of its immediate left and right
neighbors, it is considered a local maximum, that is, a peak
point. Similarly, by traversing the lower edge contours for local
minimums, trough points can be identified. Because data noise
or minor fluctuations may produce insignificant peak points,
we need to filter out peak points with significant features. To this
end, we introduce a significance index P to quantify the impor-
tance of each peak point (Wasserstein and Lazar, 2016). For each
peak point, its significance P is defined as P � Hpeak −Hbaseline, in
which Hpeak is the height of the peak point, and Hbaseline is the
height of the higher of the two local minimums found extending
from the peak point to both sides along the upper edge contour.
Only when the significance P of a peak point reaches at least the
threshold T , do we consider the peak point significant. Trough
points are also quantified for their importance using the signifi-
cance index P, ensuring that the selected peak and trough points
are worth searching. A smoothed upper-edge contour can be rep-
resented by the function y�x�, in which x represents points on the
contour. For each significant peak point xi, the determination of
its adjacent inflection points on the left and right depends on the
sign change of the second derivative of y�x�. Specifically, by exam-
ining the change in the sign of the second derivative to the left and
right of xi, we can determine the inflection points on both sides
(Fig. 5d), as shown in equation (21). The points between the cor-
responding left and right inflection points xli and xri for peak
point xi are combined to form the characteristic curve about each
peak point. Similarly, the characteristic curves for each trough
point can be obtained, and the characteristic curves of peak and
trough points serve as features of the peaks and troughs (Fig. 5e).

sign

�����
�
d2y
dx2

�
jx−1

�
≠ sign

�����
�
d2y
dx2

�
jx�1

�
: �21�
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Peak features
Trough features

Upper-edge point  
Lower-edge point  

Upper-edge contour(cubic spline interpolation)  
Lower-edge contour(cubic spline interpolation)  

Upper-edge contour(Gaussian filtering)  
Lower-edge contour(Gaussian filtering)  

Peak(Trough) point
Vertical line at left inflection point
Vertical line at right inflection point

(a)

(b)

(c)

(d)

(e)

Figure 5. (a) Waveform edge contour extraction. (b) Perform cubic
spline interpolation on the extracted waveform edge contours.
(c) Apply Gaussian filtering to the edge contours interpolated by
cubic spline. (d) Identify significant peaks and valleys and locate

inflection points on their left and right sides. (e) Feature curves of
peaks and troughs. The color version of this figure is available
only in the electronic edition.
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Waveform peak and trough restoration
Because we extract peak and valley features from the edge con-
tours of waveforms, which are generated by pen strokes that
have a certain width, the extracted peak and valley features
are affected by the width of the pen strokes. This influence
causes these features to inaccurately represent the actual wave-
form. Therefore, we apply geometric transformations to the
peak and valley features to reduce errors caused by the pen
stroke width during the waveform extraction process, thus bet-
ter restoring the actual waveform.

We first locate the start point, end point, and extremum
point of each peak feature curve as well as their center points
relative to the pen width (Δy) (Fig. 6a). For the start and end
points, we initially calculate the slope m of these points on the
peak feature curve (equation 22) obtained by calculating the
slope of the line segment formed by two adjacent points
�x1,y1� and �x2,y2�. Next, we determine the perpendicular nor-
mal slopem⊥ (equation 23). Based on the normal slopem⊥ and
a given inward distance d (d � Δy=2), we calculate the coor-
dinates of the point moved inward along the normal direction
using the geometric principles of right triangles, with horizon-
tal displacement Δx and vertical displacement Δy calculated
using equations (24) and (25). These displacement values
are then added to the coordinates of the starting and ending
points to obtain the center coordinates of the start and end
points of the peak feature curve. The same process is applied
to obtain the center coordinates of the starting and ending
points of the trough feature curve. For the extremum points
in the peak features, they are directly moved upward by dis-
tance d to determine the center position of the peak. The
extremum points in the trough features are moved downward
by distance d to obtain the center point (Fig. 6b).

Next, we use these three
center points to construct two
segmented quadratic functions
to accurately restore the peak
(or trough) features in the
actual waveform. First, the
center of the extremum point
serves as the vertex of the quad-
ratic function, dividing the fea-
ture into two segments: one
from the center of the strat
point to the center of the
extremum point, and the other
from the center of the
extremum point to the center
of the end point. For each seg-
ment, we use the vertex form of
the quadratic function
f �x� � a�x − h�2 � k, in which
�h,k� are the coordinates of the
center of the extremum point.

We solve for the coefficient a for each segment to ensure that
the quadratic function not only passes through the center of the
extremum point but also precisely through the center of the start
and end points. By establishing and solving a system of equa-
tions that includes these three center points, we obtain two coef-
ficients a1 and a2, thus defining two continuous, smoothly
transitioning segmented quadratic functions at the center point
of the extremum. This way, we obtain a segmented quadratic
function model that matches the actual waveform features of
peaks and troughs in the actual waveform (Fig. 6c). Each
method has its unique advantages. For processing periodic data,
the sine function method is usually a good choice. However, for
our specific need, which is to reduce the error caused by stroke
width during waveform extraction, the quadratic function
method has shown superior performance. Therefore, after
evaluating various strategies, we have chosen to use the quad-
ratic function method as our processing strategy. The peak and
trough features mentioned in the following content refer to their
quadratic function models.

m � y2 − y1
x2 − x1

, �22�

m⊥ � −
1
m
, �23�

Δx �
����������������

d2

1�m2
⊥

s
, �24�

Δy � m⊥ × Δx: �25�

Start point

End point

Extremum point

Center point

Peak feature

Tangent line

Tangent line

Tangent line

Perpendicular line

Perpendicular line

Perpendicular line

Quadratic function
Quadratic function

(a) (b) (c)

Figure 6. (a) Start point, endpoint, and extremum point of peak feature curve. (b) The tangent lines
and perpendicular lines at the three points on the feature curve, and the center points corre-
sponding to the three points. (c) Segmented quadratic function model that matches the peak and
trough features in the actual waveform. The color version of this figure is available only in the
electronic edition.

10 Seismological Research Letters www.srl-online.org • Volume XX • Number XX • XXXX XXXX

Downloaded from http://pubs.geoscienceworld.org/ssa/srl/article-pdf/doi/10.1785/0220240220/6907312/srl-2024220.1.pdf
by National Taiwan Univ - Lib Serials Dept user
on 07 September 2024



Vertical feature extraction of waveforms
To extract vertical features from complex waveforms, we scan
each column of pixels in the complex waveforms from top to
bottom, recording the first color transition point in each column
as the upper-edge point of the waveform yupper, and the last color
transition point as the lower edge point of the waveform ylower.
We calculate the arithmetic mean of yupper and ylower in each
column as the feature extraction point yfeature for that column
(equation 26). All the feature extraction points together
represent the vertical features of the waveform (Fig. 7a).

Subsequently, these vertical feature points undergo cubic
spline interpolation and Gaussian filtering to smooth and remove
noise (Fig. 7b). The cubic spline interpolation provides a smooth,
continuous curve that effectively models the vertical profile of the
waveform, whereas the Gaussian filtering helps in reducing noise
and minor fluctuations, ensuring that the extracted features are
more representative of the actual waveform characteristics.

yfeature �
yupper � ylower

2
: �26�

Complex waveform reconstruction
We use the peak and trough features extracted from complex
waveforms in previous steps, along with the vertical features, to
reconstruct the waveform (Fig. 8a). First, we identify the over-
lapping areas in the time series (x coordinate) between the ver-
tical features and the peak and trough features, and remove the
points within these overlapping areas from the vertical fea-
tures. Then, for each pair of adjacent peak feature sequence
p and trough feature sequence v, we define the boundaries

of the overlap area as bstart and bend (equations 27, 28), calculate
the length of the overlap area L (equation 29), and assign
�bstart,bstart � bL=2c − 1� to the earlier starting peak or trough
sequence, and �bend − bL=2c � 1,bend� to the later starting peak
or trough sequence. This method of reconstruction (Fig. 8b)
ensures that the sequence of the waveform on the time axis
is continuous, ensuring the accuracy of the waveform data.

bstart � max�pstart,vstart�, �27�

bend � min�pend,vend�, �28�

L � end − start, �29�

in which pstart, vstart are the x coordinates of the onset points of
the peak and trough feature sequences, respectively, and pend,
vend are the x coordinates of the endpoints of the peak and trough
feature sequences, respectively. Figure 9 shows the results of the
digital extraction and reconstruction of complex waveforms.

Waveform sequence integration and time
mapping
We treat each waveform in the seismogram as a row and first
perform a dynamic distributed waveform onset search across the

Vertical feature points

Vertical features

(a)

(b)

Figure 7. (a) Vertical features of the waveform. (b) Gaussian fil-
tering to smooth. The color version of this figure is available only
in the electronic edition.
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entire seismogram to determine the total number of waveform
rows N . During the process of framing and extracting complex
waveforms, we carry out a dynamic distributed waveform onset
search globally to lock the vertical position l (row number) of the
complex waveforms. Next, we compute the sequence of smooth
waveforms. The complete integration steps are as follows.

1. Once all complex waveforms in an seismogram have been
extracted, sort all complex waveforms according to their row
number l in the seismogram. Within the same row, the wave-
forms are further sorted by the x coordinate of their onset
points.

2. Define the smooth waveform between the actual onset point
of the seismogram and the onset point of the first complex
waveform �x1,y1� as the initial smooth waveform Istart
(equation 30). For any two adjacent complex waveforms
A and B, define the smooth waveform between them as
the buffer smooth waveform IAB (equation 31), and the
smooth waveform from the endpoint of the last complex
waveform �xn,yn� to the actual endpoint of the seismogram
as the ending smooth waveform Iend (equation 32).

3. Starting from the beginning, first insert Istart, and then
sequentially concatenate each seismic waveform. Insert
the calculated smooth waveform IAB between every two
adjacent waveforms and finally insert Iend (Fig. 10).

Istart � �l1 − 1� × L� x1, �30�

IAB � �lB − lA� × L − �xA end − xBstart�, �31�

Iend � �N − ln� × L� �L − xn�, �32�

in which xAend
is the x coordinate of the endpoint of wave-

form A, xBstart
is the x coordinate of the onset point of wave-

form B, l1 is the row number of the first complex waveform,
and lA and lB are the row numbers of complex waveform A
and B, respectively.

In the most well-preserved simulated seismograms, the
explanatory table is usually preserved together with the waveform
records. This explanatory table is mainly used to record the key
parameters involved in the seismograms, such as the start time
(Timestart) and the end time (Timeend) when the seismogram
begins and ends recording. We use Timestart, Timeend, and the
aforementioned timestamp base point to calculate the arrival time
of each waveform point in the integrated waveform sequence.

First, we calculate the position xi of each timestamp base
point si in the integrated waveform sequence, as shown in
the following equation:

xi � �Li − 1� × L� Xi, �33�

in which Li and Xi represent the row number and horizontal
coordinate of the timestamp base point si in the seismogram,

Peak features
Valley features

Vertical features

(a)

(b)

Figure 8. (a) Peak and trough features extracted from complex
waveforms, along with the vertical features. (b) Reconstructed
waveform. The color version of this figure is available only in the
electronic edition.
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respectively, and L is the length of each waveform in the
seismogram.

Then, we calculate the arrival time of each waveform point.
In the waveform sequence, the arrival time t of the waveform
point xi between timestamp base point si and si�1 is calculated
as shown in the following equation:

t � ti �
�

xi − si
si�1 − si

�
× Δt, �34�

in which ti is the arrival time of the timestamp base point si,
and Δt is the time interval between timestamp base point.
Similarly, we can also calculate the time of the waveform points
between the start of the drawing and the first timestamp base
point, as well as between the last timestamp base point and the
end of the drawing.

Through the earlier methods, we can effectively integrate the
waveforms in the seismograms and accurately map the arrival
time to each waveform point. This not only facilitates the precise
analysis of seismic waveforms but also provides a reliable data
foundation for subsequent research and applications.

Conclusions
This study presents a novel method for the automated process-
ing and digitization of analog seismograms, demonstrating its
excellent performance in analog seismograms processing. First,
we applied Otsu’s method for threshold segmentation, calcu-
lating the grayscale histogram of the analog seismogram to find
the threshold that maximizes interclass variance. This method
divides the pixel values of the analog seismogram into fore-
ground and background, improving processing accuracy. Next,

Figure 9. (a) Original waveform. (b) Overlay display of the original
waveform and the digitally extracted waveform. (c) Digitally

extracted waveform. The color version of this figure is available
only in the electronic edition.

Figure 10. Integration effect diagram of the waveform time
series. The color version of this figure is available only in the

electronic edition.
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we implemented a dynamic distributed waveform onset-point-
search method, which includes fuzzy search, outlier processing,
and precise search phases. This method accurately locates the
baseline onset point of each waveform and effectively identifies
the total number of waveforms. For the diversity of waveforms
in the seismograms, we designed a novel and efficient wave-
form classification algorithm that distinguishes between com-
plex and smooth waveforms by scanning the number of white
pixels along each waveform volatility midline. Furthermore, to
calculate the arrival time of the waveform using time markers
and to eliminate the interference of time markers in the extrac-
tion of complex waveforms, we utilized the YOLOv9s model to
identify and remove these markers. Experiments show that our
trained YOLOv9s model can produce acceptable results even
with a smaller training set, and it is expected to improve with a
larger training dataset. In addition, by scanning and processing
the upper and lower edges of complex waveforms, we extracted
the peak and trough features and performed geometric resto-
ration. We also extracted the vertical features of the complex
waveforms and accurately reconstructed the waveform struc-
ture based on the extracted features. Finally, we computed the
sequence of smooth waveforms and integrated the time series
of all waveforms, including both complex and smooth wave-
forms, ensuring the completeness and accuracy of the wave-
form data.

In summary, the method implemented in this study demon-
strates significant advantages and stability in the digital process-
ing of analog seismograms, potentially providing robust
technical support for seismic research and data processing.
However, the algorithm and system designed in this study have
certain limitations when dealing with severe waveform distor-
tions present in historical large earthquakes. Combining the
recent advancements in meta-learning technology (Wang,
Gong, et al., 2024), we plan to further intelligently correct large
waveform distortions to enhance the universality of our algo-
rithm and system. In addition, we do not remove the pen cur-
vature effect generated by the seismograph during the
digitization of seismograms. Regarding the pen curvature effect,
we plan to conduct in-depth research on correction algorithms
to eliminate its impact on seismic waveforms, thereby improving
the accuracy and reliability of the data. The accuracy of time
marker recognition is also a focus of our future research.

In our study, we selected 500 seismograms from the Chengde
seismic station in northern China, recorded in 1991, as our
research subjects. These seismograms were captured using the
DD-1 short-period seismic instrument—a Chinese-made device
employing electronic amplification technology and ink pen for
seismic waveform recording. In the same year, several earth-
quakes with magnitudes above 6.5 occurred in northern
China. These paper-based seismograms were converted into ras-
ter images using a high-resolution scanner, with a scanning res-
olution of 600 DPI and a color depth of 24 bits, and saved in
PNG format. In addition, the yolov9s model trained in this

study, along with its source code, can be accessed at the
GitHub repository (see Data and Resources), where subsequent
related code and data will also be released.

Data and Resources
The YOLOv9s model is available at https://github.com/sandidi/v9s-
TMS (last accessed July 2024). MATLAB can be accessed at
www.mathworks.com/products/matlab (last accessed February
2024). There are no new data or resources to report for this article.
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