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Abstract

Storing captured CO, in fractured shale reservoirs is a promising and feasible approach to ensure large-scale carbon reduc-
tion and realize the dual goals of carbon neutrality and environmental protection. However, increased fluid pressures and
decreased effective stress may promote fault/fracture reactivation and the potential to trigger seismicity. As a typical example,
we use fractured Longmaxi shale reservoirs in the southeastern Sichuan Basin to explore fluid pressure perturbations on
the potential for hazardous seismicity. We conduct double-direct shear experiments on simulated Longmaxi shale gouges to
explore the effects of over pressurization. Specifically, we isolate the impacts of fluid pressure reduction rates, magnitudes
of initial confined stress and shear velocity, and shale mineralogy on fault peak shear velocity and durations to nucleation.
A larger fault peak shear velocity and a shorter nucleation duration are proxies to indicate that the fault may be more readily
reactivated. Results identify the pressure reduction rate as one of the most important external factor influencing the fault
reactivation style. Elevating the pressure reduction rate apparently increases peak shear velocity to approach the dynamic
fault slip rate (mm/s) for earthquake triggering and reduces the duration of nucleation. Lowering the initial confining stress
and shear velocity produces similar effects. For Longmaxi shales, elevating the tectosilicate content significantly increases the
peak shear velocity and nucleation duration, while elevating carbonate content shows the opposite effect. Results imply that
the peak shear velocity of most shale faults should be below a threshold for earthquake triggering and highlight the impor-
tance of fault aseismic fault slip in triggering the potential for seismicity during CO, storage in fractured shale reservoirs.

Highlights

e Storing CO, in fractured shale reservoirs in Longmaxi shale is viable but may promote fault instability.

¢ Increasing normal stress reduction rates and lowering the confining stresses promote fault nucleation.

e Mineralogy is a single most important intrinsic factor controlling shale fault stability, especially tectosilicates and car-
bonates.
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1 Introduction

Carbon capture, utilization and/or storage (CCUS) poten-
tially serve the increasing global demand for large-scale
carbon reduction in the atmosphere and in achieving the
goal of net zero greenhouse gas emissions (Rogelj et al.
2015; Zhang et al. 2020; Chen et al. 2022). This tech-
nology involves the injection of the captured CO, from
human industrial activities into the subsurface at depths
of hundreds to thousands of meters (Al Hameli et al. 2022;
Bashir et al. 2024). Promising sites targeted for carbon
sequestration include unmineable coalbeds, deep saline
caverns or aquifers, reactive basaltic formations and
depleted oil/gas reservoirs (Matter et al. 2009; Pan et al.
2016; Baabbad et al. 2022).

Currently, storing captured CO, in fractured shale res-
ervoirs has proven to be a potentially effective approach
(Busch et al. 2008; Furukawa And Yaghi 2009; Bui et al.
2018; Hou et al. 2024). This approach shows numerous
benefits over commercial/pilot-scale CO, storage sites in
porous oil reservoirs containing a connected pore network

Fig. 1 Comparison of CO,
storage mechanisms in a
conventional porous reservoirs
and b fractured shale reservoirs,
adapted from Hou et al. (2024).
¢ The evolution of the stress
state with increasing pore fluid
pressure as a result of CO,
injection is indicated by the
Mohr circle plot. Symbols o,
and o,’ represent the maximum
principal stress, and symbols o3
and o3’ represent the minimum
principal stress

Matrix

(a) CO, storage in conventional
porous reservoirs

contributing to a highly permeable rock matrix (Fig. 1a, b)
(Zoback 2007; Nelson 2009; Zivar et al. 2021; Kuang et al.
2023). First, hydraulic fracturing for shale gas recovery
creates a fracture network that allows the penetration of
CO, into the hydraulic fractures and leaves the fracture
system to dominate the storage capacity (Loucks et al.
2012; Mohagheghian et al. 2019; Wang et al. 2020). Sec-
ond, CO, has a greatly enhanced adsorptive affinity to the
carbon-rich reservoir rocks than CH, (~5:1)—preferen-
tially fixing the adsorption-trapped CO, in the abundant
nano-pores of the tight shale matrix (Eshkalak et al. 2014;
Boosari et al. 2015). Finally, the extremely low (nano-
scale) permeability of the rock matrix in organic-rich res-
ervoir shales promotes sealing and constrains fugitive gas
migration, thus ensuring the intrinsic safety of CO, stor-
age (Ambrose et al. 2008; Gale et al. 2014; Edwards et al.
2015). In addition, it is possible to integrate the use of
CO, as the fracturing fluid to increase oil/gas production
while maintaining the potential of CO, storage, realizing
a win—win situation for carbon neutrality and enhanced
oil/gas recovery (Louk et al. 2017; Gan et al. 2021; Han
et al. 2024).

(b) CO, storage in fractured
shale reservoirs
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However, CO, sequestration in fractured shales also
poses risks of deep fault reactivation and induced seismic-
ity (Cappa And Rutqvist 2011; Vilarrasa et al. 2016, 2019;
Yin et al. 2025; Zhang et al. 2024). Factors influencing
fault stability include the selected CO, injection strate-
gies (e.g., the injection rate, volume, and duration), in-
situ tectonic environment (e.g., the thermal gradient, tec-
tonic stress, geologic structure, and chemical fluids) and
fault characteristics (e.g., the location, geometry, struc-
ture, mineralogy, and permeability) (Frohlich et al. 2016;
Foulger et al. 2018; Moein et al. 2023). There are five
possible mechanisms for fault instability induced by the
direct injection of CO, into the fractured shale reservoirs
(Vilarrasa et al. 2019). First, the injection of CO, could
increase pore fluid pressures and thereby decrease effec-
tive stress on transected or adjacent faults, enabling fault
reactivation in shear (Bao And Eaton 2016; Elsworth et al.
2016). However, unlike water injection, yielding a linear
increase in pore pressure with the logarithm of time (con-
tinuous fluid injection), CO, injection potentially yields a
stable long-term overpressure after reaching a peak during
initial injection (Henninges et al. 2011; Vilarrasa et al.
2013). Second, the non-isothermal effects of injecting a
cold fluid into a hot reservoir potentially induce thermal
stresses and local stress redistribution within the quenched
region and may thereby affect fault stability (Jeanne et al.
2014). Third, when low-permeability faults transect the
injection region, the resulting steep pressure gradients may
possibly promote fault instability (Faulkner et al. 2006).
Fourth, poroelastic stress transfer from CO, injection may
project distant fault loading and lead to fault reactivation
on critically stressed faults—even absent a direct hydraulic
connection (Ellsworth et al. 2013; Segall And Lu 2015). In
addition, aseismic slip within the pressurized region may
load and reactivate distant faults with this stress transfer
potentially triggering seismicity (Eyre et al. 2019). Finally,
the dissolution of CO, into the subsurface fluids will form
acidic solutions, with this solution potentially dissolv-
ing minerals such as clays, carbonates (calcite, dolomite,
magnesite), feldspars (plagioclase and microcline) and
augite. Changes in fault zone porosity and permeability
may impact the stability of pre-existing fractures/faults
(Alam et al. 2014; An et al. 2020a).

The elevation of pore pressures is the most direct and
predominant mechanism driving fault instability under
successive fluid injection conditions (Ellsworth et al.
2013; Moein et al. 2023). Here, we focus on the effect
of such successive injections of CO, on fault stability in
shales and then analyze the potential for shear failure on
pre-existing fluid-pressurized fractures/faults. Shear reac-
tivation can be described by the Coulomb failure criterion.
That is, failure of a fault will occur when the shear stress
7 acting on the fault plane exceeds the shear strength 7

T—1,=7— (Cy+ Uy * Opegt) 20 (1)

where C, is the cohesion (usually equal to O for pre-existing
and active faults due to the granular fault gouge particles
within the faults), y, is the static frictional coefficient of the
fault, and o, is the effective normal stress applied on the
fault plane. Coulomb failure stress (ACFS) can be used to
evaluate whether a fault is approaching or retreating from
failure. This may be defined as a function of normal and
shear stress as (King et al. 1994; Hill 2008)

ACFS = At — pg s (Ao, — APy) = At — p e Aoy (2)

where Az, Ac,, APy, and Ao, represent changes in shear
stress, normal stress, pore fluid pressure and effective nor-
mal stress, respectively. Successive stages of CO, injection
potentially induce perturbations in stress on the pressurized
fault with changes in the Coulomb failure stress (ACFS)
serving as a harbinger for fault reactivation (Fig. 1c). We
use the fractured gas shale reservoirs of the Sichuan Basin of
southwest China as characteristic of other similar reservoirs
and perform shear reactivation experiments to explore the
impact of CO, injection-induced stress perturbations on the
evolution of fault failure.

2 Experimental Methods
2.1 Shale Gouge Preparation

We use shales from the lower Silurian Longmaxi forma-
tion recovered from the Lijiawan Quarry, Yanjin County,
Zhaotong City, Yunnan Province, southwest China (Fig. 2a).
The geographic coordinates of the quarry are 104°26'33.9"
E and 28°07'55.4" N with more details on characteristics
provided in An et al. (2020b). These shales are currently the
most important target for shale gas recovery in the Sichuan
Basin, southwest China. The Longmaxi shales outcropping
in the Lijiawan Quarry were deposited in the same geologi-
cal period as the deep shales of Changning, Weiyuan, and
Luzhou—important national shale gas demonstration blocks
(Fig. 2b). The Lijiawan shales are exposed at the surface as a
result of multiple polycyclic tectonic movements (Guo 2013;
Tan et al. 2014), although, otherwise, are fully representative
of the deep reservoir shales of the Longmaxi formation of
the southeastern Sichuan Basin.

We recovered a total of 32 shale samples (sample num-
bers Shale_5 to Shale_38) from the geologic section in
Lijiawan Quarry to represent the full stratigraphic sequence
of the Longmaxi Formation shales (Fig. 2c). X-ray diffrac-
tion (XRD) was employed to determine mineral composi-
tions at the Micro Structure Analytic Laboratory of Peking
University, Beijing, China, using a Rigaku D/max-rB X-ray
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Fig.2 a Locations of the Lijiawan Quarry (red square) and Chang-
ning, Weiyuan, and Luzhou areas (red circles) in the southeastern
Sichuan Basin. The blue and black lines denote the boundaries of
Sichuan and Yunnan Provinces, respectively. Blue squares indicate
Chengdu and Kunming cities, respectively. b The exposed Long-
maxi formation shales in the Lijiawan Quarry face. ¢ A schematic
showing the geologic section and shale sampling locations (Shale_5

diffractometer—with detailed results reported in An et al.
(2020b). Results identify the Longmaxi shales as primarily
comprising quartz, feldspar, clay minerals (mostly illite and
chlorite), calcite, dolomite and traces of pyrite. We further
classify these component minerals into groups as tectosili-
cates, phyllosilicates and carbonates based on their similar
crystal structures and frictional properties and following the
practice of Fang et al. (2018) and Kohli and Zoback (2013).
The tectosilicates primarily include quartz and feldspar,
the phyllosilicates primarily clay minerals and with calcite
and dolomite dominating the carbonates. The tectosilicates
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to Shale_38) in the Lijiawan Quarry together with photos of three
representative shale sampling locations (Shale_15, Shale_17, and
Shale_29). Shale samples and related sampling location numbers
increase from the base to the top of the stratigraphic section. Shale_8
is buried under a house and shale_34 is buried by a thick layer of ben-
tonite. Thus, these two shales were difficult to recover and not sam-
pled

show a structure with four oxygen atoms of SiO, tetrahedra
shared by other tetrahedra (Fang et al. 2018). This crystal
structure promotes high hardness and thus high frictional
strength and velocity-weakening (potentially unstable slip)
response. The carbonates have a rhombohedral structure and
they also exhibit high frictional strength. Conversely, the
layered structures in phyllosilicates are less resistant to shear
and generally show low frictional strength and velocity-
strengthening (stable slip) response. The tectosilicate con-
tent decreases from the base to the top of the stratigraphic
section (i.e., with increasing sampling numbers), while the
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carbonate content shows the opposite trend. Phyllosilicate
contents are primarily in the range 20-40 wt.% and change
uniformly over the section. The mineralogical transition
from tectosilicate-dominated to carbonate-dominated shales
is common in Longmaxi shales with this phenomenon pri-
marily attributed to the sedimentary environments changing
from intra-shelf to shallow shelf during sedimentation (Xu
etal. 2019).

We select eight samples (sampling numbers: Shale_7,
Shale_11, Shale_15, Shale_17, Shale_26, Shale_29,
Shale_35 and Shale_38) as representative of these mineral-
ogical trends from the 32 collected shale samples to conduct
the fault gouge shear reactivation experiments. The mineral
compositions of the eight shales are shown in Table 1, with
the tectosilicate, phyllosilicate and carbonate contents span-
ning the ranges 14-76 wt.%, 6-38 wt.%, and 0-80 wt.%. The
variations in tectosilicate or carbonate contents in these eight
selected shales reflect the mineralogical heterogeneity over
the entire Longmaxi stratigraphic section. After removing
surface impurities, the shales were crushed and sieved to
particle diameters < 106 pm to represent fault gouge. The
powdered shales do not fully represent the in-situ fault gouge
materials as fault shear offsets can be large and contrasting
lithologies are present in opposite walls of the contacting
fault, broadening the mineralogical distribution. However,
they are the best representation of the fault gouge as the
fault gouge is primarily a wear product from the fault wall/
surrounding rock. The particle size distributions comprising
D10, D50 and D90 (particle diameter passing 10, 50 and
90 vol.%) are shown in Fig. 3 and Table 2. Values of D10,
D50, and D90 of these shale powders are primarily within
the ranges 0.7-1.5, 4.1-12.8 and 24.1-96.3 pm, respectively,

with values of D90 in Shale_7, Shale_15, and Shale_29
much lower than in the other shales. The Longmaxi shales
include carbonaceous, calcareous, siliceous and argilla-
ceous shales and mineralogical contents varying from top
to base in the formation. This change in mineralogy would
also affect the difference in particle diameters between the
simulated shale gouges even if they are crushed and ground
under the same conditions.

2.2 Experimental Apparatus

Our shear experiments were completed on fault gouge using
the double-direct shear apparatus (Fig. 4a) developed in the
Department of Earth and Space Sciences, Southern Uni-
versity of Science and Technology, Shenzhen, China. This
apparatus comprises four components, i.e., the control and
loading systems, the double-direct shear assembly and the
data acquisition system. The control system comprises two
high-performance computers that may separately set experi-
mental parameters and control the entire testing process. The
apparatus may run under pre-defined load, displacement,
or shear velocity control modes. The loading system inde-
pendently or simultaneously applies horizontal and vertical
loads via the two loading pistons transiting the load frame on
the upper and right sides. Both horizontal and vertical loads
are applied during the tests via the servo-controlled hydrau-
lic pumps. The maximum designed horizontal and vertical
loading capacities of the piston are 1000 kN to a precision
of +0.5 kN. The data sampling system includes two high-
precision linear variable differential transducers (LVDT).
Two load cells are attached to the loading pistons and meas-
ure the horizontal and vertical loads to a precision of + 1 N.

Table 1 Mineral compositions

¢ . Shale samples Shale_7 Shale_11 Shale_15 Shale_17 Shale_26 Shale 29 Shale_35 Shale_38

(in weight percentage wt.%) of

the eight selected shales Quartz 68.0 46.0 35.0 32.0 24.0 220 18.0 4.0
Albite 5.0 14.0 17.0 13.0 8.0 8.0 6.0 6.0
Orthoclase 3.0 6.0 4.0 7.0 3.0 5.0 2.0 3.0
Pyrite - - 6.0 2.0 2.0 2.0 - 1.0
Illite 22.3 30.3 8.4 15.5 23.6 17.3 18.3 3.7
Chlorite 0.3 - 8.1 10.8 9.1 10.0 1.5 1.1
Kaolinite - - 2.1 - - - - -
/S 14 - 0.4 4.7 53 3.7 - 1.2
C/S - 37 - - - - 2.2 -
Calcite - - 10.0 11.0 22.0 29.0 52.0 80.0
Dolomite - - 9.0 4.0 3.0 3.0 - -
Tectosilicates  76.0 66.0 62.0 54.0 37.0 37.0 26.0 14.0
Phyllosilicates 24.0 34.0 19.0 31.0 38.0 31.0 22.0 6.0
Carbonates - - 19.0 15.0 25.0 32.0 52.0 80.0

The abbreviations “I/S” and “C/S” represent the illite/smectite mixed layer and chlorite/smectite mixed
layer, respectively. The symbol “X” indicates that the sample was not tested. We define tectosilicate group
minerals as of quartz, albite, orthoclase and pyrite, phyllosilicates as of illite, chlorite, kaolinite, I/S and
C/S, and carbonates as of calcite and dolomite
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Table 2 Particle sizes
corresponding to D10, D50, and
D90 of the eight selected shale

gouges

Shale samples Shale_7 Shale_11 Shale_15 Shale_17 Shale_26 Shale_29 Shale_35 Shale_38

D10 (pm) 0.8 1.2 0.7 1.3 1.2 1.0 1.5 1.3
D50 (pm) 4.4 10.2 4.1 10.0 6.1 4.6 12.8 6.8
D90 (pm) 314 66.4 24.1 64.3 67.6 334 96.3 80.3

D10, D50, and D90 denote the sizes of 10, 50, and 90 vol.% (volume percentage) shale particles below this
diameter
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o
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Fig.4 a Schematic showing shear loading frame and the double- effective stress decrease. Symbols o, 7, Pf, u, kg, Vyand le represent

direct shear configuration. b Conceptual fault sliding model based on the normal stress, shear stress, pore fluid pressure, fault coefficient of
a single degree-of-freedom spring—slider model (Yoshida And Kato friction, fault stiffness coefficient, block shear velocity and load point
2003). ¢ Coulomb-type failure criterion illustrating the conditions for velocity, respectively

fault reactivation as a result of progressive fluid pressure elevation or
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The LVDTs are fixed to the load frames and record normal
and shear displacements to a resolution of + 0.1 um. The
load cells and displacement transducers are all calibrated by
the manufacturer before the shear tests.

The fault gouge shear experiments were performed using
the double-direct fault shear assembly following the meth-
ods of Mair and Marone (1999) and Ikari et al. (2009). This
assembly consists of three stainless steel blocks/platens
sandwiching two layers of fault gouge with the normal and
shear stresses applied by the horizontal and vertical pis-
tons, respectively (Fig. 4a). The central steel block has a
dimension of 10 cm X4 cm X 3 cm (length X width X height)
and the two outer blocks measure 4 cmx4 cm X2 cm
(length X width X height). Shear initiates by forcing the cen-
tral steel block downwards while keeping the horizontal nor-
mal stress constant. Thus, these block dimensions ensure a
constant contact area of 16 cm? throughout the entire test.
The surfaces of the steel platens contain saw-teeth as dense
triangular grooves (1-mm width and 0.8-mm height) with
ridges perpendicular to the shear direction—to minimize
boundary shear and maximize localization within the gouge
layer. Fault gouge thickness for all tests was precisely con-
trolled to be 5 mm by the use of a leveling jig. We also
ensure identical masses in each of the two layers of gouge
using a balance to maintain similar initial densities and
porosities (Frye And Marone 2002). All experiments were
conducted at room temperature (~ 20 °C) and room humidity
(~60%). However, this humidity would have a minor effect
on the experimental result as we dried the gouge before the
tests and each test lasted only for a few hours.

2.3 Testing Procedures and Experimental Data

Fault frictional sliding behavior is analyzed based on a sin-
gle-degree-of-freedom spring—slider model (Fig. 4b) that
comprises a block (slider) and an activating spring load-
ing the block through a pre-defined shear velocity applied
to a load point (Yoshida And Kato 2003; Fukushima et al.
2023). From Amontons' law (7= p-(6,—Pg) =t Cperr), WE
assume that the influence of increasing the fault zone pore
fluid pressure would be identical to decreasing the effective
normal stress (o,.4). Therefore, unlike conventional shear
tests with stepped fluid pressures from successive fluid injec-
tions (Scuderi And Collettini 2018), we hold shear stress
constant at steady-state friction and gradually decrease the
total normal stress. We then record the evolution of shear
velocity and observe how shear failure accelerates, as illus-
trated in Fig. 4c. This experimental design imposes similar
stress perturbations to those resulting from fluid injection
but on unjacketed and unconfined samples. We vary initial
normal stresses, gouge mineralogy (by sample number/
location), initial fault sliding velocity and effective normal
stress reduction rate (equivalent to the pore fluid pressure

@ Springer

increasing rate) and record the evolution of shear velocity as
a proxy for evolving instability. We did not directly elevate
the pore fluid pressure but use a gradually decreased effec-
tive normal stress to conduct the experiments, also for the
following reasons. We attempted to elevate the pore fluid
pressure but could not maintain steady experimental control.
Thus, we choose to gradually decrease the effective normal
stress as a direct proxy. Besides, some of Longmaxi shales
show a high proportion of clays and finer particles and these
would have an effect in achieving steady and uniformly dis-
tributed pore fluid pressure.

A total of 20 groups of experiments were conducted at
varied normal stress reduction rates, initial normal stresses,
shale compositions (samples) and initial shear velocities,
with experiment details summarized in Table 3. A total of
four suites of experiments were run to isolate and examine
the individual influences of (i) normal stress reduction rate,
(ii) initial normal stress, (iii) mineralogical controls, and (iv)
initial shear rate on the evolution of shear velocity and to
explore controls on the onset of instability. Four experiments
(CHS_NR1, CHS_NR2, CHS_NRS5 and CHS_NR10) were
performed at a constant initial normal stress of 40 MPa, a
constant initial shear velocity of 1.0 pm/s but different nor-
mal stress reduction rates from 0.01 to 0.10 MPa/s on gouge
Shale_15, to define controls of normal stress reduction rate
on fault shear velocity evolution. Another four experiments
(CHS_N20, CHS_N30, CHS_N50 and CHS_N60) were
conducted at a constant initial shear velocity of 1.0 pm/s,
a constant normal stress reduction rate of 0.01 MPa/s but
initial normal stresses of 20—60 MPa on gouge Shale_15,
to explore the effect of initial normal stress on fault shear
velocity evolution. Seven shear tests (CHS_Sh7, CHS_Shl11,
CHS_Sh17, CHS_Sh26, CHS_Sh29, CHS_Sh35 and CHS_
Sh38) were performed at constant initial normal stress, ini-
tial shear velocity and normal stress reduction rate but on
different shale gouges, to define the mineralogical controls
on fault shear velocity evolution. In addition, five experi-
ments (CHS_SV0.3, CHS_SV3, CHS_SV10, CHS_SV20
and CHS_SV30) were conducted at a constant initial normal
stress of 40 MPa, a constant normal stress reduction rate of
0.01 MPa/s but initial shear velocities from 0.3 to 30 pm/s,
to explore the influence of initial shear rate on fault shear
velocity evolution.

At the initiation of each shear test, the gouges were
sheared at a pre-defined shear velocity (V) and initial
normal stress (o,) until reaching steady-state friction at
time t,. Then, we gradually decreased the normal stress
(o,) at a pre-defined normal stress reduction rate while
keeping the shear stress (7) constant at a shear displace-
ment of 2-3 mm and at time #,,;. Finally, we record the
evolution of fault shear velocity and observe the styles
of slip. We repeat this for successive reactivations with
the entire experimental cycle illustrated in Fig. 5. We
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Table 3 Experiment matrix and details

Experiment ID  Initial normal Initial shear Initial shear dis-  Shale gouge = Normal stress Peak shear Nucleation
stress (MPa) velocity (pm/s) placement (mm) reduction rate velocity V, duration ¢, —
(MPa/s) (pm/s) tini (8)
Changing the normal stress reduction rate
CHS_NRI1 40 1.0 3.0 Shale_15 0.01 299.5 113
CHS_NR2 40 1.0 3.0 Shale_15 0.02 518.1 71
CHS_NR5 40 1.0 3.0 Shale_15 0.05 1887 64
CHS_NR10 40 1.0 3.0 Shale_15 0.10 2401 34
Changing the initial normal stress
CHS_N20 20 1.0 3.0 Shale_15 0.01 568.4 98
CHS_N30 30 1.0 3.0 Shale_15 0.01 457.4 152
CHS_N50 50 1.0 3.0 Shale_15 0.01 58.4 177
CHS_N60 60 1.0 3.0 Shale_15 0.01 84.3 232
Changing the shale gouge
CHS_Sh7 40 1.0 3.0 Shale_7 0.01 1764 244
CHS_Sh11 40 1.0 3.0 Shale_11 0.01 636.7 228
CHS_Sh17 40 1.0 3.0 Shale_17 0.01 735.9 286
CHS_Sh26 40 1.0 3.0 Shale_26 0.01 156 219
CHS_Sh29 40 1.0 3.0 Shale_29 0.01 70.2 121
CHS_Sh35 40 1.0 3.0 Shale_35 0.01 3334 217
CHS_Sh38 40 1.0 3.0 Shale_38 0.01 94.6 171
Changing the initial shear velocity
CHS_SVO0.3 40 0.3 2.0 Shale_15 0.01 182.7 184
CHS_SV3 40 3.0 3.0 Shale_15 0.01 397.9 134
CHS_SV10 40 10.0 3.0 Shale_15 0.01 823.6 284
CHS_SV20 40 20.0 3.0 Shale_15 0.01 170.9 216
CHS_SV30 40 30.0 3.0 Shale_15 0.01 85.1 266

The initial fault shear velocity is set as 0.3 pm/s for test CHS_SVO0.3. This slow velocity would promote an early steady state and thus we shorten
the shear displacement to 2.0 mm. As fault stability is also related to the evolution of gouge porosity, a different initial shear velocity would
introduce a different fault gouge porosity. Hence, we also explored the impact of the initial shear velocity on fault nucleation

Fig.5 Schematic showing slip
velocity evolving following
successive fluid injections dur-
ing CO, storage. Symbols V,,
Vs ty, t;> and t,,,,., respectively,
represent maximum shear
velocity, initial shear velocity,
time when steady-state friction
first reached, time of normal
stress reduction and time cor-
responding to the maximum
shear velocity

Slip velocity V

Y S

Hold T constant
Decrease 6n

© Nucleation
<— process —>|

ACFS >0 ACFS =0

define the peak shear velocity as V, and the correspond-
ing time as the nucleation time #,,.. The duration from
tini to 1., defines the duration of nucleation (¢
Specifically, we evaluate the impacts of changes in

nuc_tini)'

® ; ;
to tini tnuc’ tnuc

Absolute time t

experimental conditions on the maximum shear veloc-
ity V,, and the duration of nucleation. According to Scu-
deri and Collettini (2018), instability occurs when the
peak shear velocity exceeds the dynamic fault slip rate
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(~mm/s). A shorter nucleation duration indicates that the
fault will be readily reactivated, and a longer nucleation
duration implies an increased resistance to reactivation.
Final shear displacements in individual tests over multiple
cycles are < 7-8 mm with the sampling frequency set to
1 Hz.

3 Results

We evaluated the evolution of fault shear velocities result-
ing from (i) different rates of normal stress reduction
(representing increased fluid pressure elevation rates),
(i) initial normal stresses, (iii) initial shear velocities,
and (iv) mineralogy. We focus on the impacts of the
above parameters on fault peak shear velocity (V) and the
duration of nucleation time (#,,.—t;,;), With a larger peak
shear velocity and a shorter nucleation duration indicat-
ing greater propensity for reactivation. We also compare
the magnitudes of normal stress drops (Ao,) during the
fault nucleation process and ratios of normal stress drop
to initial normal stress (Ao,/o,) to understand the evolu-
tion of shear velocity. The main experimental results are
described in the following.
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3.1 Role of Different Normal Stress Reduction Rates

Following the procedures described in Sect. 2.3, the shale
gouge was initially sheared at a pre-defined shear velocity
until reaching steady-state friction. The shear stress was then
held constant, and the normal stress was gradually reduced
to observe how fault shear velocity evolves. We first exam-
ine the effect of normal stress reduction rate on fault shear
velocity evolution (Fig. 6). According to Amontons' law
(t=wu-(6,—Py) = u-0,.5), increasing the (effective) normal
stress reduction rate is equivalent to increasing the rate of
elevating the pore fluid pressure. This process represents
an increased CO, injection rate during geologic storage
(Cameron And Durlofsky 2012; Kolster et al. 2018). Shear
velocity evolution with increasing time for tests CHS_NR1,
CHS_NR2, CHS_NRS5, and CHS_NR10 are all similar. All
were sheared at an initial shear velocity of 1.0 pm/s with
the velocity reduced to O pm/s after holding the shear stress
constant while gradually reducing the normal stress. Finally,
the velocity increased exponentially to the peak shear veloc-
ity after nucleation durations of tens to hundreds of seconds.

With an increase in normal stress reduction rate, the dura-
tion of nucleation monotonically decreases from > 100 s
to <40 s, while the peak shear velocity monotonically
increases from ~300 pm/s to ~2400 pm/s (Figs. 7 and 8
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Fig.6 Shear velocity evolution with increasing time at different normal stress reduction rates, a CHS_NR1, b CHS_NR2, ¢ CHS_NRS, and d
CHS_NR10. Blue arrows indicate the duration of holding the shear stress constant
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and S1 in the supporting information). The largest increase
in maximum shear velocity occurs when the normal stress
reduction rate is elevated from 0.02 to 0.05 MPa/s. The
peak shear velocities at normal stress reduction rates of 0.05
(V,=1886.8 pm/s) and 0.10 MPa/s (V,,=2401.0 pm/s) all
exceed dynamic fault slip rates (~mm/s), implying the possi-
bility of triggering seismicity (Fig. 8). Meanwhile, the stress
drops (Ac,) during the nucleation process are also correlated
with the normal stress reduction rates, and both Ag, and
Ao, /o, values are positively correlated to the normal stress
reduction rate (Fig. 7). The values of Ao, /o, approach~8%
at normal stress reduction rates of 0.05 and 0.10 MPa/s, but
they reduce to~3% at normal stress reduction rates of 0.01
and 0.02 MPa/s. These results document that increasing
the normal stress reduction rate could lower the duration

60 80 100 120
Nucleation Duration (s)

of nucleation and elevate the maximum shear velocity and
normal stress drop, demonstrating the direct destabilizing
effect of elevating equivalent pore fluid pressures.

3.2 Role of Varied Initial Normal Stresses and Shear
Velocities

Magnitudes of applied normal stress reflect varied tec-
tonic stress conditions and reservoir depths. The burial
depths of Longmaxi shales are typically within the range of
1.5-3.0 km in the southeastern Sichuan Basin, represented
by normal stress in the range of 20 to 60 MPa (An et al.
2020b; Dong et al. 2018), with experimental curves shown
in Fig. 9. Shear velocity curves at initial normal stresses
of 20-50 MPa are similar, with the shear velocity rapidly
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Fig.9 Shear velocity evolution with increasing time at different initial normal stresses, a CHS_N20, b CHS_N30, ¢ CHS_N50, and d CHS_
N60. Blue arrows indicate the duration of holding the shear stress constant

evolving from zero to the peak shear velocity after hold-
ing the shear stress constant (Figs. 6a and 9a—c). However,
the duration of nucleation at 6, =60 MPa is much longer
(> 230 s), with the velocity slowly evolving to the peak shear
velocity compared to tests at lower normal stresses. With an
increase in fault initial normal stress, the peak shear velocity

gradually decreases from > 550 to < 100 pm/s, and the dura-
tion of nucleation increases from~ 100 s to> 230 s (Figs. 10
and 11 and S2). Similar to the results in Sect. 3.1, the fault
peak shear velocity decreases with increasing nucleation
durations at higher initial normal stresses. However, the
peak shear velocity at initial normal stresses of 20-60 MPa

Fig. 10 Fault shear evolution at 800 T T T T
different initial normal stresses, Normal stress = 20 MPa
with values of As,, and Ac, /o, Normal stress = 30 MPa
marked _ Normal stress = 40 MPa
) 600 L ﬁo"/- 1'_0: :w; /a Normal stress = 50 MPa| |
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S 400 -
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Fig. 11 Variation in maximum
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are all below the dynamic fault slip rate (~ mm/s), indicat-
ing the reduced possibility of triggering seismicity by pres-
sure perturbation (Fig. 11). Values of Ao, at different initial
normal stresses are low, and all <2.5 MPa (Fig. 10). Values
of Ao, /o, at 6,=20-30 MPa are high and approach 5%, but
reduce to ~3-3.5% for o, =40-60 MPa (Fig. 10). These data
show that increasing the initial normal stress evidently low-
ers the peak shear velocity and Ac, /o, but extends the dura-
tion of nucleation, identifying a propensity for destabiliza-
tion at lower effective pressures.

We shear the gouge at a pre-defined velocity for a shear
displacement of 2—3 mm before simulating the nucleation
process. This replicates the slip behavior of natural faults
as natural faults are primarily in a stable (steady) state
before CO, injection. Pre-slip was applied to ensure steady
state of friction (Savage And Marone 2007). As dictated
by our shear apparatus, we could only apply shear veloci-
ties of 0.3 to 30 pm/s to maintain steady experimental con-
trol (Fig. 12). A shear velocity of 30 pm/s is the highest
shear velocity feasible in the apparatus to maintain steady
experimental control. At initial shear velocities of 20 and
30 pm/s, the shear velocities evolve more slowly to the peak
values than in other cases. When the initial shear velocity
was elevated from 0.3 to 10 pm/s, the shale fault peak shear
velocity increased from~ 180 to~ 820 pm/s, and the dura-
tion of nucleation also increased from~ 130 to~280 s (Fig.
S3). This phenomenon differs from increasing the normal
stress reduction rate or initial normal stress where the peak
shear velocity and the nucleation duration are negatively
correlated (Figs. 8 and 11). Moreover, when the initial
shear velocity was elevated from 10 to 30 pm/s, the peak
shear velocity decreased from ~ 820 to~ 85 pm/s, and the
nucleation duration decreased slightly from ~280 to~220 s
(Fig. S3). Values of Ao, and Ac, /o, change positively with

Nucleation Duration (s)

the nucleation duration, and they are higher at initial shear
velocities of 10-30 pm/s, exceeding 2 MPa and 5%, respec-
tively (Fig. 13). These results show that increasing the initial
shear velocity increases the peak shear velocity, nucleation
duration and Ao, when the initial shear velocity is below
a threshold of 10 pm/s for the current study. In addition to
the impact of initial shear velocity, the critical shear veloc-
ity (~ 10 pm/s) affects peak shear velocity and the duration
of nucleation (see Fig. S3). It is apparent that the high and
low initial shear velocities would produce different shale
gouge porosities and furthermore impact the fault nuclea-
tion process.

3.3 Role of Different Gouge Mineralogies

Shale mineralogy is one of the most important intrinsic fac-
tors controlling fault frictional stability based on the veloc-
ity-stepping friction experiments (Fang et al. 2018; Kohli
and Zoback 2013). The depositional environments of the
Longmaxi formation shales undergo a change from intra-
shelf to shallow-shelf from the top to the base of the forma-
tion, and this depositional setting leads to a strong hetero-
geneity in Longmaxi shale mineral compositions (Xu et al.
2019; An et al. 2020b). The intra-shelf regions are enriched
in siliceous minerals and organic contents due to the abun-
dance of ocean creatures. With a drop in sea level over the
shallow shelf, the reduced abundance of ocean creatures
result in the decreased contents of siliceous minerals and
organics. In addition, abundant carbonate minerals would be
deposited on the shallow shelf due to the continental inputs
(Xu et al. 2019). Mineral enrichment by ocean fauna ensures
a higher proportion of siliceous minerals at the top of the
formation, while the continental inputs elevate the carbo-
naceous contents at the formation base. As noted in many
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Fig. 12 Shear velocity evolution with increasing time at different initial shear velocities, a CHS_SV0.3, b CHS_SV3, ¢ CHS_SV10, d CHS_

SV20, and e CHS_SV30

previous studies, the phyllosilicate minerals typically show
low frictional strength and promote predominantly aseis-
mic fault slip—they are the most important component that
controls fault slip evolution and imparts mechanical weak-
ness (Ikari et al. 2009; Carpenter et al. 2011). The tectosili-
cate and carbonate minerals typically exhibit high frictional
strength, and enrichment of these minerals potentially pro-
motes unstable sliding of faults under varied testing condi-
tions (Tembe et al. 2010; Verberne et al. 2015).

Slip reactivation curves of different shale gouges are
shown in Fig. 14. The shear velocity evolutions in most
shale gouges are similar except for Shale_26 and Shale_35.
After holding the shear stress constant, the shear velocities

@ Springer

in Shale_26 and Shale_35 first reach a minor peak and then
evolve to the highest values. Mineralogy may influence the
peak shear velocity and nucleation duration, but the impacts
also vary with the proportion of tectosilicates, phyllosilicates
and carbonates (Figs. 15, 16 and S4). As tectosilicate con-
tent increases, the peak shear velocity increases from ~ 70
to~ 1760 pm/s, and the nucleation duration increases slightly
from~ 170 to~290 s except for Shale_15 and Shale_29
(Fig. 16a-b). The peak shear velocity apparently decreases
with increased carbonate content, and the nucleation dura-
tion slightly decreases except for Shale_15 and Shale_29
(Fig. 16¢c—d). However, there is no evident correlation
between the peak shear velocity and nucleation duration
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with phyllosilicate content (Fig. S4). The lower nucleation
durations in Shale_15 and Shale_29 possibly result from the
particle sizes and values of D90 in Shale_15 and Shale_29,
which are much lower than for other shales (Table 2). In
addition, the tectosilicate-rich shale gouges show higher val-
ues of Ao, and Ao, /o, than tectosilicate-lean shale gouges.
The values of Ac, /o, for Shale_7, Shale_11 and Shale_17
all exceed 5.5%. The peak shear velocity for Shale_7 (with
the highest tectosilicate content of ~ 76 wt.%) is higher than
the dynamic fault slip rate for triggering the seismicity, indi-
cating the higher possibility of tectosilicate-rich faults to
promote unstable sliding. As for, for the impact of shale
mineralogy, the shale gouge nucleation process is controlled
by a combination of the three mineral groups rather than that
of a single mineral group—thus the peak shear velocity and
duration of nucleation may be not linearly correlated with
shale mineralogy.

4 Discussion

After analyzing the impacts of normal stress reduction rates,
initial normal stresses and shear velocities, and mineralogy
on shale fault shear velocity evolution, we first discuss the
similarities and differences of our results to previous stud-
ies and then the implications for shale fault stability during
CO, storage. We employ the test results to interpret possi-
ble fault nucleation mechanisms during CO, storage within
Longmaxi shales.

4.1 Comparisons with Previous Studies

We have explored the effects of normal stress reduction rates,
initial normal stresses, initial shear velocity, and mineralogy

Nucleation Duration (s)

on the shear evolution of shale faults under fluid pressure
perturbations. As restricted by our shear apparatus, we grad-
ually decreased the (effective) normal stress upon reaching
steady-state friction to observe the evolution of shear failure
as a proxy for directly elevating pore fluid pressure. The
shale gauge generally became stable after holding the shear
stress constant and gradually decreasing the normal stress.
The shear velocity then increases exponentially to the peak
value upon reaching the Coulomb failure criterion (Eq. (2)).
The values of peak shear velocity (V},), nucleation duration
(t,ue—tini) and normal stress drops (Ac,) vary regularly with
changes in the testing conditions. We compare our testing
results with field and laboratory tests where fluids are actu-
ally injected (Guglielmi et al. 2015; Scuderi And Collettini
2018).

A suite of field fluid injection tests was conducted by
Guglielmi et al. (2015) on a fault located in an underground
research laboratory in southeastern France. The fault has
a length of more than 500 m, and the injection was per-
formed at a depth of ~280 m within a carbonate formation.
A total of 950 L of water was injected at step-increasing
rates from < 10 to> 50 L/min to drive an increase in in-
situ pressures and reactivate fault shear displacement and
velocities. Results demonstrate a negligible fault shear
displacement of ~0.1 mm within the initial 800 s, to dis-
placements of ~0.3 mm at~ 1100 s and ~ 1.2 mm at~ 1400 s,
accompanied by then exponentially increased fault slip rates
from ~4 pm/s before 1100 s to~23 pm/s after 1100 s. A
congruent laboratory experiment driving fault creep was
performed by Scuderi and Collettini (2018) to similarly
characterize slip evolution with increasing pore fluid pres-
sures on Rochester shale (68% illite—kaolinite and 27%
quartz—plagioclase). The fault was initially sheared at a
rate of 10 pm/s until a steady-state friction was achieved,
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Fig. 14 Shear velocity evolution for different shale gouges, a CHS_Sh7, b CHS_Sh11, ¢ CHS_Sh17, d CHS_Sh26, e CHS_Sh29, f CHS_Sh35,
and g CHS_Sh38
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and shearing then stopped to allow the sample to relax to
residual shear strength. Next, the feedback control on shear
was switched from displacement to load control and set a
shear stress of ~80/90% of the steady-state shear strength.
Finally, the fault was left to creep for an hour before elevat-
ing the pore fluid pressure at a pre-defined rate. Results iden-
tify a trimodal fault slip behavior upon fluid pressurization,
i.e., an initial decelerating creep followed by steady-state
creep before the final dynamic slip. However, the failure
slip velocity of the Rochester shale gouge remained lower
(~200 pm/s) than the dynamic slip rate. Our testing results
are consistent with the two examples that show an exponen-
tially increased fault slip velocity that could be observed
upon fluid pressurization. But our pressure perturbation rate
(0.01-0.10 MPa/s) is much higher than that (1 MPa/h or
0.2 MPa/12 min) in Scuderi and Collettini (2018), and the
achieved peak shear velocity could exceed the dynamic slip
rate (~mm/s). Although we did not directly elevate the pore
fluid pressure but rather adopted an equivalent method to
gradually decrease the (effective) normal stress, this method
is a convenient way to reflect the shear velocity evolution
upon fluid pressurization during CO, storage in fractured
shale reservoirs.

4.2 Implications for Shale Fault Stability During CO,
Storage

Using a proxy for fluid pressurization, our results aid in
understanding reactivation response during CO, storage.
Our normal stress reduction rates are 0.01-0.10 MPa/s and
much higher than field injection rates that are typically on
the order of several hours to days per MPa (Osiptsov 2017).
At much lower normal stress reduction rates, the induced
peak shear velocity barely approaches the dynamic fault
slip rate and directly triggers seismicity (Fig. 7). Reservoirs
depths are generally of the order of 1.5-3 km in the south-
eastern Sichuan Basin with lithostatic pressures >40 MPa.
With increased confined pressures, the induced peak shear
velocity would also decrease and below the dynamic fault
slip rate (Fig. 10). Although the Longmaxi shales show
strong heterogeneity in mineral composition, the Longmaxi
shale gouge only develops a peak shear velocity of one tec-
tosilicate-rich shale larger than the dynamic fault slip rate
(Fig. 15). Consequently, most shale faults should slide stably
upon the fluid pressurization during CO, storage.

Another important question is whether faults in Long-
maxi shale will exhibit velocity-weakening or velocity-
strengthening behavior. Based on rate and state friction,
velocity-strengthening faults will only promote aseismic
slip, while velocity-weakening faults potentially promote
fault unstable sliding when the critical stiffness condition is
also met (Dieterich 1979; Ruina 1983; Gu et al. 1984). The
frictional stability of Longmaxi shales has been evaluated
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at a confining pressure of 60 MPa, pore fluid pressure of
30 MPa and temperature of 150 °C by An et al. (2020b). The
results indicate that only tectosilicate-rich or carbonate-rich
shale gouge exhibits velocity-weakening response and thus
may host unstable sliding—these shales only account for
5% of the strata in the Longmaxi formation. Shear velocity
evolution, combined with the frictional stability analysis,
demonstrates the importance of shale fault aseismic slip in
triggering seismicity, similar to that observed in hydraulic
fracturing for shale gas exploitation (An et al. 2020b). As
a result of the strong heterogeneity in the mineralogy of
the Longmaxi shales, only the tectosilicate-rich or carbon-
ate-rich fractures/faults are prone to be seismogenic. CO,
injection into fractured shale reservoirs would elevate fluid
pressures and could induce aseismic fault slip. Poroelastic
stress transfer could also conspire to shed loading onto dis-
tant seismic-capable faults and trigger seismicity (Fig. 17).
This mechanism could provide a possible explanation for
the earthquake occurrence during both the CO, storage
in fractured shale reservoirs and that observed in hydrau-
lic fracturing for shale gas exploitation in the southeastern
Sichuan Basin.

We may estimate potential earthquake magnitudes based
on the observed normal stress drops in the shear tests. The
seismic moment (M) may be calculated from the shear
stress drop (Ar) values based on Brune’s source model for
a circular crack (Brune 1970; Vouillamoz et al. 2016) as

M0=1—6-A‘r-r3
7

3
where r represents the fault radius, and the shear stress drop
A is estimated from the normal stress drop (As,)), expressed
as

At =y, + Ao, )

where y; represents the coefficient of friction of the Long-
maxi shale gouges (typically ~0.5-0.6 (An et al. 2020b)).
The relationship of earthquake moment magnitude (M,,) to
seismic moment (M) is
2

M, = 3° logM, — 6 5)

In the southeastern Sichuan Basin, the lower Silurian
Longmaxi shale generally has a thickness of 50-550 m and
a burial depth of 1.5-3.0 km. Hence, the lengths of pre-
existing faults transecting the shale could be of the order
of ~10°> m (Jiang et al. 2016). A normal stress of 40 MPa
represents a burial depth of 2.0 km. For a coefficient of fric-
tion of 0.6 and normal stress drops within the range 1-3 MPa
(Figs. 7, 10, 13 and 15), an earthquake moment magnitude
(M) induced by the CO, storage could reach 0-1, 2-3,
and 4-5 for fault radii of~10' m,~10* m, and~ 10’ m,
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respectively (Fig. 18). Currently, earthquake magnitudes
(M) induced by hydraulic fracturing in the Changning and
Weiyuan blocks, southeastern Sichuan Basin are already
larger than 4.0 (An et al. 2020b) with this also providing

Fault Radius (m)

bounds for the possibility of triggering moderate earth-
quakes during CO, injection. Increasing CO, injection rates
(i.e., the normal stress reduction rates in these experiments)
and confining pressures (i.e., the initial normal stresses
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representing burial depth) all potentially elevate the magni-
tude of stress drops and the earthquake moment magnitude
(Figs. 7 and 10).

5 Conclusions

We report double-direct shear tests on synthetic Longmaxi
shale gouges to define controls of pressure perturbations
on the potential for fault reactivation during CO, storage in
the fractured shale reservoirs of the southeastern Sichuan
Basin. We use normal stress perturbations as a proxy for
fluid pressurization and assume that the increase in pore
fluid pressure is equivalent to the decrease in effective nor-
mal stress. During fault shear, we also hold the shear stress
constant and regard this point as the start of fault nucleation
process. The effects of equivalent pressure reduction rate,
magnitudes of initial confined stress and shear velocity, and
shale mineralogy are analyzed. The main conclusions are
described as follows.

Pressure reduction rate. An increase in stress reduction
rate (equivalent to fluid pressure increase rate) reflects the
response to CO, storage at increased fluid injection rates.
Elevating the normal stress reduction rates from 0.01 to
0.10 MPa/s significantly increases peak shear velocity and
to higher than the fault dynamic slip rate for earthquake trig-
gering and apparently shortens the duration of nucleation.
This demonstrates that the fluid pressure increase rate is an
important external factor in earthquake triggering.

Initial confined stress and shear velocity. The magnitude
of the initial confining stress represents CO, storage at dif-
ferent reservoir depths with varied initial shear velocities
producing different fault gouge initial states. Lowering the
confining stress from 60 to 20 MPa and the shear velocity
from 0.3 to 10 pm/s produces similar effects to elevating the
pressure reduction rate.

Shale mineralogy. The proportion of tectosilicates is
known to gradually decrease from the top to the base of
Longmaxi formation, with carbonate contents exhibiting
the opposite trend. Elevating the tectosilicate content leads
to increases in both peak shear velocities on the fault and
the duration of nucleation. However, increasing carbon-
ate contents shows the opposite trend. Shear slip evolution
does not show an obvious variation with the proportion of
phyllosilicates.

Implications. Our shear experiments indicate that faults
in the Longmaxi shale typically slip at velocities below
the dynamic fault slip rate for earthquake triggering. This
observed shear velocity evolution, combined with the
observed tendency for frictional stability, provides evidence
of the importance of aseismic fault slips in triggering seis-
micity during CO, storage in fractured shale reservoirs.
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